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Abstract

This chapter covers the phenomenon of Internet use disorders (IUDs) and putative associations with
different neurotransmitter and neuropeptide systems. Genes coding for such messengers can be seen as
an important starting point in the complicated quest to understand human behavior including new phenom-
ena such as IUDs.

Therefore, a special focus of this chapter will lie on individual differences in molecular genetic underpin-
nings of neurotransmitter and neuropeptide systems and their associations with individual differences in ten-
dencies towards IUDs. By shedding light on these associations, putative predisposing molecular genetic
factors for the emergence andmaintenance of IUDs can be carved out. Therefore, first an introduction to IUDs
and a model that can guide research on putative associations of IUDs with different specific neurotransmitters
and neuropeptides will be presented. Subsequently, twin studies on the heritability of IUDs are reviewed.
Finally, studies on differences in molecular genetic predispositions and their associations with differences
in IUDswill be presented and discussed, including targets related to the dopaminergic and serotonergic system
aswell as the hypothalamic neuropeptide oxytocin. The chapter closeswith a conclusion aboutwhat is already
known and what needs to be investigated in future studies to gain further insights into putative associations
between molecular genetic markers and IUDs.

INTERNET USE DISORDERS

Internet use disorder (IUD), previously known for exam-
ple as “Internet addiction” (Pontes et al., 2015) or
“pathological Internet use” (Davis, 2001), has gained
increasing attention in scientific research since the first
case study published (Young, 1996). However, given
the lack of an official diagnosis and hence of diagnostic
criteria, there is no consensus on a definition. Neverthe-
less, in broad terms IUD could be seen as “excessive or
poorly controlled preoccupations, urges, or behaviors

regarding computer use and Internet access that lead to
impairment or distress” (Weinstein et al., 2014, p. 99).

Several putative symptoms of an IUD are frequently
debated. For example, Young (1998) used revised symp-
tomsof gambling disorder to classify an IUD.As such, she
constituted symptoms including preoccupation, tolerance,
loss of control, withdrawal, risking social relationships or
job/educational chances due to Internet use, lying to others
about one’s Internet use, and mood modification (Young,
1998). Similarly, Tao et al. (2010) suggested a “2+1 rule”:
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while both preoccupation and withdrawal were defined as
necessary symptoms to diagnose an IUD, at least one addi-
tional symptom of tolerance, loss of control/persistent
desire to use the Internet, ongoing use of the Internet
despite realizing negative consequences, loss of interest
in other hobbies and activities, and mood regulation
must be prevalent. Additionally, a functional impair-
ment must be prevalent and the IUD must have lasted
for at least 3 months with at least 6h of daily Internet
usage, while the excessive Internet use should not be
better explained by psychotic disorders or bipolar I dis-
order (Tao et al., 2010). Interestingly, to diagnose an IUD,
many researchers emphasize the importance of negative
consequences on one’s life due to Internet use and dif-
ferentiate between merely time-consuming/excessive
use and IUD (Tao et al., 2010; Pontes et al., 2015).

In sum, the symptoms discussed in light of an IUD are
partly overlapping with the symptoms of substance
dependences (World Health Organization, 2019). How-
ever, it must benoted that the adoptionof substancedepen-
dence symptoms to an IUD is often debated, and it is
important to not overemphasize abnormality in everyday
behavior (Billieux et al., 2015; Kardefelt-Winther et al.,
2017). It is therefore important to note that an IUD is often
seen as a dimensional construct from no/normal Inter-
net use via problematic use to IUD (Tao et al., 2010;
Montag et al., 2011; M€uller et al., 2017; Sindermann
et al., 2018). Among others due to the ongoing debate
about the term, definition, and diagnostic criteria, preva-
lence rates vary between studies and between regions.
A meta-analysis across 31 countries reported prevalence
rates between 2.6% in Northern and Western Europe
and 10.9% in the Middle East (Cheng and Li, 2014).

An important early model to explain the emergence
and maintenance of an IUD is the Cognitive-Behavioral
Model of Pathological Internet Use by Davis (2001)
emphasizing maladaptive cognitions. More specifically,
themodel byDavis (2001) is a diathesis-stress model and
is designed as a process model. Psychopathology such as
depression can be seen as a diathesis. Stress can be
caused by the discovery of the Internet or certain activi-
ties that can be carried out on the Internet (Davis, 2001).
Other important components of the model to explain the
emergence and maintenance of an IUD are rewarding
effects of Internet use, lack of social support, and, impor-
tantly, maladaptive cognitions. In sum, an IUD is thought
to be a consequence of maladaptive cognitions and
behavioral responses that intensify or at least maintain
maladaptive Internet use. Importantly, Davis (2001)
was one of the first to differentiate between unspeci-
fied/generalized and specific IUDs. He proposed that
unspecified IUD refers to pathologic overuse of the Inter-
net in general. As such, unspecified IUD includes

wasting time online with no clear objective. Specific
IUDs, on the contrary, were defined as pathologic over-
use of specific Internet activities and were seen as prob-
lems transferred from the offline to the online world, for
example offline and online gambling (Davis, 2001).

Today, the separation of unspecified and specific IUDs
is still important. Often the differentiation is illustrated
between the specific IUDs of Internet gambling disorder,
gaming disorder, buying-shopping disorder, communica-
tion/social networks use disorder, and pornography use
disorder (Montag et al., 2015, 2020b; Brand et al., 2016;
M€uller et al., 2017; Sindermann et al., 2018). For now,
only gambling and gaming disorder (predominantly online
or offline) are official diagnoses in the International Clas-
sification of Diseases – 11th Revision (ICD-11) (World
Health Organization, 2019). Of note, the term Internet
use disorder is used throughout this chapter in order to
strive for unification of terms in the literature, based on
the terminology for gaming disorder used in the ICD-11.

To explain the emergence and maintenance of IUDs,
currently the Interaction of Person-Affect-Cognition-
Execution model (I-PACE) and its updated version are
often considered as a relevant theoretic framework
(Brand et al., 2016, 2019). The initial I-PACE model is
an integration of various theoretic ideas and models
and can be understood as a general model for specific
IUDs. It is defined as a process model comprising tem-
poral dynamics of the “addiction” process (Brand
et al., 2016). As already indicated by the name of the
model, it proposes complex mediating and moderating
effects between personal (predisposing) factors and
affective, cognitive, and executive functioning variables.
Affective and cognitive factors comprise constructs such
as coping mechanisms, cognitive biases, attentional
biases, and the urge for mood regulation. Executive fac-
tors refer among others to inhibitory control mechanisms
or lack thereof (Brand et al., 2016). Importantly, the per-
sonal/predisposing factors comprise not only social cog-
nitions, personality, psychopathologies, and specific use
motives, but also the biopsychological constitution of a
person (Brand et al., 2016). The latter refers to genetic
factors as well as ontogenetic aspects with regard to
biologic systems.

The updated I-PACE model broadens the perspective
and constitutes not only being applicable to specific
IUDs but more broadly to general addictive behaviors,
including unspecified IUD. Moreover, the updated
I-PACE model differentiates between variables involved
in addictive behaviors in general and variables involved
only in specific addictive behaviors. It also differentiates
between the mechanisms involved in the early and later
stages of an “addiction” process. Finally, it goesmore into
detail with regard to what the authors call an “inner circle

390 C. SINDERMANN ET AL.



of the addiction process” (Brand et al., 2019, p. 2), hence,
explaining mediating and moderating effects in more
detail based on recent literature (Brand et al., 2019).
Of importance for the present chapter and without going
into excessive detail: genetic factors are included in the
I-PACE model as a person’s core characteristics. Such
characteristics are seen as important predisposing fac-
tors underlying various addictive behaviors, i.e., puta-
tively unspecified as well as specific IUDs (Brand
et al., 2019). Therefore the I-PACE model may be used
as a basis to investigate molecular genetic underpinnings
of unspecified and specific IUDs.

NEUROTRANSMITTERS,
NEUROPEPTIDES, AND INTERNET

USE DISORDERS

Within the broad topic of the emergence and mainte-
nance of IUDs, this chapter focuses specifically on the
role ofmolecular genetics associated with neurotransmit-
ters and neuropeptides. Potential starting points to search
for neurotransmitters/neuropeptides being associated
with IUDs are manifold. For example, one can focus
on neuropeptides which are known to be associated with
behaviors and traits closely related to IUDs, such as the
personality traits of low self-directedness, high impulsiv-
ity, low conscientiousness, and high neuroticism (all are
related to unspecified IUD (Montag et al., 2010, 2011;
Sariyska et al., 2014; Lachmann et al., 2017; Peterka-
Bonetta et al., 2019)) or other addictive behaviors and
substance dependences. However, this chapter will focus
on a model, which is based on abundant neuroscientific
research and directly deals with the topic of IUDs. Impor-
tantly, this model deals with unspecified IUD but results
might also be transferrable to certain specific IUDs.

The model of interest by Montag et al. (2016) associ-
ates unspecified IUD with personality traits derived from
the Affective Neuroscience Theory. Drawing on a large
body of animal research, Affective Neuroscience Theory
identifies seven systems in themammalian brain; in detail,
in evolutionary old, subcortical brain regions (Panksepp,
1998). Therefore these systems are likely to be conserved
across the mammalian brain, hence, also found in the
human brain (Maclean, 1985; Panksepp, 1998). As these
systems influence emotionality in a bottom-up fashion,
they are also known as primary emotional systems. These
systems are labeled SEEKING, CARE, PLAYFULNESS,
LUST, and FEAR, PANIC/GRIEF, and RAGE. Note that
the primary emotional systems are written in capital letters
based on the convention established for labeling neurolog-
ically based emotional primes (Davis et al., 2003).

While the first four primary emotional systems have a
positive valence, the latter ones have a negative valence.

As emotionality is an important part of personality, in
humans six of these systems are measured as personality
traits by means of the Affective Neuroscience Personal-
ity Scales (Davis et al., 2003; Davis and Panksepp, 2011;
Reuter et al., 2017b). In detail, these six primary emo-
tional traits are labeled SEEKING, CARE, PLAYFUL-
NESS, FEAR, SADNESS (from the PANIC/GRIEF
system), and ANGER (from the RAGE system) (Davis
et al., 2003; Davis and Panksepp, 2011; Reuter et al.,
2017b). LUST is not included in the questionnaire due
to potential confounding effects and biases when answer-
ing questions on one’s sexual behavior (Davis and
Panksepp, 2011). Of major importance, due to abundant
animal research and pharmacological challenge studies
as well as electric brain stimulation studies, each of the
primary emotional systems is linked to certain brain
areas and neurotransmitters/neuropeptides (Panksepp,
1998, 2011). Therefore also in humans, the primary
emotional traits are most likely linked to the brain areas
and neurotransmitters/neuropeptides, which are linked
to the respective primary emotional systems in mam-
mals (for examples, see Table 27.1). Therefore, if pri-
mary emotional traits are associated with IUDs, IUDs
might in turn be associated with the neurotransmit-
ters/neuropeptides which are linked to the respective
primary emotional system.

In a sample of N¼680 German-speaking participants,
Montag et al. (2016) found that the overall unspecified
IUD score was inversely associated with the positive pri-
mary emotional traits (SEEKING, CARE, PLAYFUL-
NESS) and positively related to the negative primary
emotional traits (FEAR, SADNESS, ANGER). Most
pronounced associations were found for the associations
with FEAR, SADNESS, and CARE (see regression anal-
ysis in the paper). These associations provide an important
roadmap to the study of neurotransmitters/neuropeptides
potentially associated with IUDs. For example, in
Table 27.1, the underlying brain structures and neurotrans-
mitters/neuropeptides associated with FEAR, SADNESS,
and CARE, and therefore putatively also associated with
unspecified IUD, are listed. As can be seen in this table,
oxytocin is an important neuropeptide modulating the
activity of the FEAR (downregulation), SADNESS
(downregulation), and CARE (upregulation) circuitries.
Given the links of higher FEAR, higher SADNESS,
and lower CARE, with higher scores in unspecified
IUD, oxytocin might be an important neuropeptide
explaining the underlying biochemistry of unspecified
IUD; and maybe also specific IUDs. In sum, based on
the Affective Neuroscience Theory framework, oxytocin
seems to be a promising candidate neuropeptide to study
associations with IUDs (see Montag et al. (2016) for fur-
ther information and more detailed explanations).
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TWIN STUDIES—ARE INTERNET USE
DISORDERS HERITABLE?

Asmentioned among others in the I-PACEmodel (Brand
et al., 2016, 2019), genetic underpinnings are seen as
important predisposing variables for the emergence of
IUDs. Moreover, the model by Montag et al. (2016) pro-
vides further insight into which specific neurotransmit-
ters/neuropeptides might underly IUDs. Combining the
two approaches leads to a roadmap on which molecular
genetic variables can be investigated for putative associ-
ations with IUDs. However, before going into detail, one
first needs to check whether IUDs show a heritable com-
ponent. Therefore twin studies are of utmost importance
to examine howmuch variance in IUDs can be accounted
for by genetic factors.

Many variables, for example, personality traits, which
are known to be associated with IUDs, have been found
to have a heritable component (Bezdjian et al., 2011;
Polderman et al., 2015; Vukasovi"c and Bratko, 2015;
Hahn et al., 2017). However, instead of explaining these
studies in detail, we will focus on twin studies explicitly
investigating the heritability of IUDs. Of note, the twin
studies available to date all deal with unspecified IUD.

In a sample of N¼237 Turkish twin pairs, both addi-
tive genetic effects and nonshared environmental effects
each explained about 42% of the variance in unspecified
IUD, whereas the shared environment accounted for only
about 17%. However, genetic effects were only prevalent
in men but not in women according to comparisons of
monozygote and dizygote twin correlations (Deryakulu
and Ursavaş, 2014). In a sample of N¼825 twin pairs
from China, Li et al. (2014) found that in women around

58% of the variation in unspecified IUD could be
explained by genetic effects and in men around 66%.
The remaining variation could be explained by nonshared
environmental factors.Moreover, in a sample ofN¼5247
twins from the Netherlands, it was found that in men and
women equally, around 48% of the variation in unspeci-
fied IUD was explained by genetic factors while the
remaining variation was explained by nonshared environ-
mental factors (Vink et al., 2016). Another twin study on
N¼355 twin pairs from Germany found that genetic
effects did not explain a significant amount of variation
in overall unspecified IUD scores (Hahn et al., 2017).
Nonshared and shared environmental factors did explain
a significant amount of variation. However, for specific
subfacets of unspecified IUD, such as loss of control,
mood regulation, and negative outcomes, heritability
was estimated to lie between 21% and 33% (Hahn
et al., 2017).

In sum, these twin studies suggest that part of the var-
iance in unspecified IUD can be accounted for by genetic
factors.A roadmap forwhich specific genetic factorsmight
influence the susceptibility for unspecified IUD can be
found in the model by Montag et al. (2016) and has been
mentioned earlier. Initial results of molecular genetic asso-
ciation studies are detailed in the next paragraph.

INITIAL MOLECULAR GENETIC
FINDINGS IN THE LIGHT OF INTERNET

USE DISORDERS

This paragraph deals with individual differences inmole-
cular genetic factors and how these differences might
influence the risk for vs resilience against the emergence

Table 27.1

Primary emotional traits/systems associated with the overall unspecified IUD score and their underlying brain
neuroanatomy and neurotransmitters/neuropeptides

Primary emotional
trait (system) Brain neuroanatomy related to the system

Some neurotransmitters/neuropeptides related to the
system

FEAR Central and lateral amygdala to medial
hypothalamus and dorsal periaqueductal gray

Glutamate (+), corticotropin-releasing factor/
hormone (+), cholecystokinin (+), alpha-
melanocyte-stimulating hormone (+),

oxytocin (")
SADNESS
(PANIC/GRIEF)

Anterior cingulate, bed nucleus of stria
terminalis and preoptic area, dorsomedial
thalamus, periaqueductal gray

Opioids ("), oxytocin ("), prolactin ("),
corticotropin-releasing factor/hormone (+),

glutamate (+)
CARE Anterior cingulate, bed nucleus of stria

terminalis, preoptic area, ventral tegmental
area, periaqueductal gray

Oxytocin (+), prolactin (+), dopamine (+), opioids
(+/")

Table content based onMontag C, Sindermann C, Becker B et al. (2016). An affective neuroscience framework for the molecular study of internet
addiction. Front Psychol 7. https://doi.org/10.3389/fpsyg.2016.01906 and Montag C, Davis KL (2018). Affective neuroscience theory and person-

ality: an update. Personal Neurosci 1. https://doi.org/10.1017/pen.2018.10.

Note: + excitatory effects; " inhibitory effects.
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of IUDs. Various genetic association studies exist, which
link individual differences in molecular genetic variables
to individual differences in psychologic constructs
known to be associated with IUDs (such as personality
traits (Okbay et al., 2016; Lo et al., 2017; Gray et al.,
2018; Hennig et al., 2020)). These studies might further
provide insight into putative molecular genetic factors
associated with IUDs. Nevertheless, this part of the chap-
ter will focus on initial studies directly linking individual
differences inmolecular genetic factors to differences in
IUDs. In line with our approach throughout the chapter,
we will review studies on unspecified IUD. However,
also several studies on Internet gaming disorder have
been conducted (according to ICD-11 nomenclature:
gaming disorder, predominantly online; we use the term
“Internet gaming disorder” to use the term “disorder”
consistently throughout the chapter; we do not apply
the ICD-11 nomenclature due to the fact that none of
the studies investigated the disorder against the back-
ground of the ICD-11 framework). We will therefore
also review these studies in this part of the chapter.

Molecular genetic underpinnings
of neurotransmitter systems

MOLECULAR GENETIC UNDERPINNINGS OF THE

DOPAMINE SYSTEM

One of the first studies investigating the molecular genetic
underpinnings of an IUD compared the distributions of
alleles in two dopaminergic polymorphisms between
79 men classified as suffering from Internet gaming dis-
order and 75 age- and gender-matched control partici-
pants from South Korea (Han et al., 2007). The two
polymorphisms of interest were the dopamine receptor
D2/ankyrin repeat and kinase domain containing 1
(DRD2/ANKK1) Taq1A (rs1800497) single nucleotide
polymorphism (SNP) and the catechol-O-methyltrans-
ferase (COMT) Val158Met (rs4680) SNP (Han et al.,
2007). The DRD2/ANKK1 Taq1A genotypes seem to
be associated with differences in the DRD2 binding
(potential); A2/A2 homozygotes show a higher binding
(potential) than A1+ carriers (A1/A2,A1/A1) (Gluskin
and Mickey, 2016; Tunbridge et al., 2019). In the study
by Han et al. (2007), both the A1/A2 and A1/A1 geno-
types of the DRD2-Taq1A SNP were more prevalent in
the group of participants with Internet gaming disorder
compared to the control group. Therefore the A1 allele
associated with lower D2 receptor binding (potential)
seems to be positively associated with Internet gaming
disorder, hence, maybe also unspecified IUD and other
specific IUDs. Interestingly, the same allele (A1) has
also been associated with a risk for alcohol, smoking,
and opioid dependence (Munafò et al., 2007; De
Ruyck et al., 2010; Wang et al., 2013a,b; Deng
et al., 2015).

The COMT Val158Met SNP causes a valine to
methionine substitution in the 158th codon of the COMT
gene, thereby moderating the dopamine catabolism by
the COMT enzyme in the synaptic cleft. In more detail,
the Val allele is associated with higher enzyme activity,
hence, higher dopamine catabolism (Lachman et al.,
1996; Chen et al., 2004; Tunbridge et al., 2019). Of
importance, the mechanism of varying COMT enzyme
activity is potentially of major importance in the prefron-
tal cortex due to a paucity of dopamine transporters in
this region (Sesack et al., 1998; Lewis et al., 2001). In
the study by Han et al. (2007), the Met allele of the
COMT Val158Met SNP occurred more frequently in
the Internet gaming disorder group compared to the con-
trol group but only when comparing Met+ (Met/Met +
Val/Met) vs Met- (Val/Val) carriers. This finding indi-
cates that the allele associated with lower enzyme activity
and lower dopamine catabolism is positively associated
with Internet gaming disorder.

Aside from the study by Han et al. (2007), another
study could not confirm the role of the DRD2/ANKK1
Taq1A SNP in Internet gaming disorder in a sample of
63 subjects with Internet gaming disorder and 87 control
subjects from South Korea (Paik et al., 2017). Moreover,
no association between Internet gaming disorder and a
DRD2 SNP (rs6277) was found (Paik et al., 2017). How-
ever, associations between the -141C insertion/deletion
(Ins/Del) polymorphism and certain symptoms of Inter-
net gaming disorder in men were observed: In men, the
group of participants carrying the Del- genotype (Ins/Ins)
showed a higher prevalence of symptoms of “continued
excessive use of Internet games despite knowledge of
psychosocial problems” and “mood modification” (Paik
et al., 2017, p. 4). This polymorphism is perhaps associ-
ated with DRD2 gene expression with lower expression
associated with the Del allele; however, findings are
mixed (Arinami et al., 1997; Pohjalainen et al., 1999).
On a psychologic level, the Ins allele of this polymor-
phism might be associated with alcohol dependence,
but—again—results are mixed (Ishiguro et al., 1998;
Sander et al., 1999; Parsian et al., 2000; Konishi et al.,
2004; Prasad et al., 2010). Additionally, the polymor-
phism has mostly been studied in the context of schizo-
phrenia, although the associations are not clear, yet
(Ohara et al., 1998; Glatt et al., 2004).

Another study on the associations between dopamine-
related polymorphisms and unspecified IUD investi-
gated the associations between the COMT Val158Met
(rs4680; see previously mentioned) and rs4818 SNPs
(Ioannidis et al., 2020). The sample consisted of 206
individuals from the United States, 24 classified as suf-
fering from an unspecified IUD and 182 not suffering
from an IUD. For none of the polymorphisms under
investigation, an association with unspecified IUD was
found (Ioannidis et al., 2020).
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In summary, there is indication that dopamine-related
genetic polymorphisms might be associated with individ-
ual differences in Internet gaming disorder, hence, poten-
tially also with other specific IUDs and/or unspecified
IUD. This is also in line with the Affective Neuroscience
Theory framework by Montag et al. (2016), which indi-
cates dopamine as a putative neurotransmitter associated
with IUDs, because both (unspecified IUD and dopamine)
are associatedwith CARE.Moreover, dopamine is impor-
tant for the SEEKING system (Panksepp, 2011), which
without a doubt plays an important role in addiction,
although no associations could be observed with unspeci-
fied IUD in theMontag et al. (2016)work, probably due to
suboptimal operationalization of the SEEKING items in
the context of an addiction framework. However, despite
theoretical support for the associations between IUDs and
dopamine-related genetic polymorphisms, the failed rep-
lications of molecular genetic findings between studies
as reported previously need to be considered.

MOLECULAR GENETIC UNDERPINNINGS OF THE

CHOLINERGIC SYSTEM

In this section, we will focus on the nicotinic acetylcho-
line receptor gene subunit alpha 4 (CHRNA4). This is an
interesting candidate gene in the study of IUDs, among
others, because it is indirectly related to the dopaminergic
system (Parish et al., 2005; Markett et al., 2009, 2011).

Montag et al. (2012) investigated the allelic distribu-
tions of a SNP (rs1044396) in the CHRNA4 gene
between 132 German individuals categorized with an
unspecified IUD vs gender- and age-matched controls.
Montag et al. (2012) found that the homozygous CC
genotype occurred more frequently in the group suffer-
ing from unspecified IUD, an effect driven by women.
Of major interest, this result could in part be replicated
with regard to Internet gaming disorder. A study by
Jeong et al. (2017) in a sample of 30 men with Internet
gaming disorder and 30 gender-matched controls from
South Korea found that the T allele occurred less often
in the Internet gaming disorder group. Additionally, the
CC genotype carriers showed higher scores in the Internet
gaming disorder scale compared to T+ carriers (TT+CT).
This indicates that while the T allele seems to be protec-
tive, the C allele (especially the homozygote CC geno-
type) seems to be associated with a higher risk for
Internet gaming/use disorder. Of importance, the C allele
of this SNPmight also be associated with a higher risk for
nicotine dependence (Feng et al., 2004). Finally, it needs
to be noted that a total of 72 individual genes were inves-
tigated in the study by Jeong et al. (2017), but only the
effect of the CHRNA4 rs1044396 SNP was significant
after (genomic-control) correction.

These findings underline the importance of the
CHRNA4 gene in IUDs but might also strengthen the
role of dopamine in IUDs given the putative interactions
between the two systems (Parish et al., 2005; Markett
et al., 2009, 2011).

MOLECULAR GENETIC UNDERPINNINGS OF THE

SEROTONIN SYSTEM

In addition to dopamine-related polymorphisms, also a
prominent polymorphism of the serotonin system has
been investigated in light of IUDs.

A study by Lee et al. (2008) compared the distribu-
tions of different alleles in 5-HTTLPR in a sample of
91 men classified with an unspecified IUD and 75 men
as control subjects from South Korea. 5-HTTLPR is a
polymorphism in the promotor region of the serotonin
transporter gene (SLC6A4) comprising a short and/or
a long allele. The long allele shows a higher gene
expression rate than the short allele (Lesch et al.,
1996). Lee et al. (2008) found in their study that the
homozygous short/short genotype was more prevalent
in individuals categorized with unspecified IUD. Of
note, 5-HTTLPR has been investigated in the context
of many psychiatric disorders and might also be associ-
ated with alcohol dependence. However, results are dif-
ficult to interpret due to putative publication bias in the
published results and methodological issues such as
small sample sizes (McHugh et al., 2010; Kenna
et al., 2012).

Nevertheless, this finding indicates that differences in
the serotonin system might be of importance to explain
the emergence and maintenance of IUDs.

Molecular genetic underpinnings
of neuropeptide systems

MOLECULAR GENETIC UNDERPINNINGS ASSOCIATED

WITH THE CORTICOTROPIN-RELEASING HORMONE

Park et al. (2018) investigated polymorphisms associated
with various neurotransmitter/neuropeptide systems in a
sample of 118 men with Internet gaming disorder and
112 men without Internet gaming disorder from South
Korea. Specifically, the dopamine receptor D4 variable
number of tandem repeat (VNTR) polymorphism, the
dopamine transporter 1 VNTR polymorphism, a nor-
adrenaline transporter/norepinephrine 8 polymorphism
(rs5569), the CHRNA4 SNP (rs1044396; see previously
mentioned), and a corticotropin-releasing hormone
receptor 1 SNP (CRHR1) (rs28364027) were investi-
gated. Only the CRHR1 SNP exhibited a significant dif-
ference between the Internet gaming disorder and control
groups. In more detail, the AA genotype occurred more
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frequently in the group of individuals with Internet gam-
ing disorder. This finding is of great interest as CRH is
associated with FEAR and SADNESS according to the
Affective Neuroscience Theory, hence, potentially also
to (unspecified) IUD according to the molecular genetic
framework byMontag et al. (2016). Moreover, it is inter-
esting to note that other polymorphisms of the CRHR1
gene have been associated with symptoms of disorders
such as alcohol dependence, potentially in conjunction
with stressful or adverse life events (Treutlein et al.,
2006; Blomeyer et al., 2008; Chen et al., 2010; Glaser
et al., 2014).

MOLECULAR GENETIC UNDERPINNINGS OF THE

OXYTOCIN SYSTEM

One study investigating the link between a functional
oxytocin receptor (OXTR) gene SNP (rs2268498) and
real-world behavior tracked via a smartphone should
be mentioned. The rs2268498 is located in the promoter
flanking region of the OXTR gene and the T allele
(vs the C allele) is associated with lower OXTR mRNA
expression on the biologic level (Reuter et al., 2017a) and
with higher scores in face recognition (Melchers et al.,
2013), interpersonal perception (Melchers et al., 2015),
and empathic concern (a subfacet of empathy; TT vs
TC and CC) (Christ et al., 2016) as well as lower autistic
tendencies (especially for TT-genotype carriers) (Montag
et al., 2017) on a psychologic level.

Despite not investigating IUD specifically, this par-
ticular study should be mentioned because it (i) inves-
tigates a polymorphism related to the oxytocin system,
which might be associated with (unspecified) IUD
according to the framework by Montag et al. (2016),
and (ii) points toward a new line of research objectively
investigating real-world variables instead of self-report
measures in association with molecular genetics.

In a sample of 117 German participants, the study by
Sariyska et al. (2018) found that the TT-genotype of
rs2268498 was linked to a higher number of active con-
tacts (the average number of contacts a participant was in
contact with per day through phone calls) and a higher
number of incoming calls compared to C+ carriers
(CC+CT). Results were weaker when age was taken into
account. This finding indicates that the T allele (espe-
cially the homozygous TT genotype), generally being
associated with more prosocial tendencies, is also asso-
ciated with greater social use of the smartphone. Never-
theless, whether rs2268498 is associated with the
“addictive” use of the smartphone or its communication
applications (i.e., a mobile version of IUD) needs to be
clarified in future studies. The study by Sariyska et al.
(2018) “only” points toward an association with greater

social use, but not necessarily also “addictive” use. Impor-
tantly, a conference abstract exists which points toward a
protective effect of the TT genotype in rs2268498 against
unspecified IUD (Sariyska et al., 2016).

Further findings on putative molecular
genetic underpinnings

In addition to the prominent polymorphisms from the
neurotransmitter/neuropeptide systemsmentioned previ-
ously, some other polymorphisms have been investigated
in light of IUDs.

A study by Kim et al. (2016) investigated various
genetic variants in 30 men with Internet gaming disorder
and 30 men as control participants from South Korea.
More specifically, targeted exome sequencing was used
to investigate 159 genes and 83 SNPs, which were puta-
tively associated with Internet gaming disorder. Of all
variants under investigation, only one SNP—rs2229910
of the neurotrophic tyrosine receptor kinase, type 3
(NTRK3) gene—showed a significant association with
Internet gaming disorder after adjustment of P-values.
In detail, while the C allele was associated with a pro-
tective effect against Internet gaming disorder, the
G allele was linked to a higher risk for Internet gaming
disorder (Kim et al., 2016). The gene on which this
SNP lies (NTRK3) codes for a receptor of the neuro-
trophic tyrosine kinase (NTRK) family (https://www.
ncbi.nlm.nih.gov/gene/4916). The roles of this gene
and this specific SNP on psychologic variables are
not well studied, yet. Therefore the role of this poly-
morphism in Internet gaming disorder needs further
clarification.

CONCLUSION

Despite most IUDs not being an official diagnosis,
yet—except for the related gambling and gaming dis-
orders in the ICD-11 (World Health Organization,
2019)—a great deal of research on this topic was
conducted throughout the past years. Nevertheless,
studies on the molecular genetic basis of IUDs are rare.
Only eight studies (and one conference abstract) inves-
tigating mostly different genetic polymorphisms in
light of IUDs could be identified. These studies mostly
deal with various neurotransmitter systems such as the
dopaminergic or the serotonergic system and neuro-
peptides. A summary of the studies can be found in
Table 27.2.

Overall, the studies reviewed in this chapter have cer-
tain limitations, which make it difficult to draw a clear
conclusion. First of all, most of the studies consist of
rather small sample sizes of individuals classified as
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suffering from an IUD, i.e., between 24 (Ioannidis et al.,
2020) and 132 participants (Montag et al., 2012). Clearly,
these numbers, especially the latter one, can be consid-
ered high when taking into account the putative clinical
context of an IUD. However, in light of molecular
genetic association studies, where effect sizes are gener-
ally estimated to be very low, these sample sizes are still
rather small. Therefore nonsignificant findings in some
studies might be due to the low statistical power. Addi-
tionally, whereas some studies deal with unspecified
IUD (Lee et al., 2008; Montag et al., 2012; Ioannidis
et al., 2020), several other studies deal with Internet gam-
ing disorder, specifically (Han et al., 2007; Kim et al.,
2016; Jeong et al., 2017; Paik et al., 2017; Park et al.,
2018), which hampers an overall generalization of
results.

Moreover, the diagnostic criteria applied to diagnose
an IUD/Internet gaming disorder vary between studies,
further limiting generalizability. Next, the studies were
implemented either in Korea (Han et al., 2007; Lee
et al., 2008; Kim et al., 2016; Jeong et al., 2017; Paik
et al., 2017), Germany (Montag et al., 2012; Sariyska
et al., 2018), or the United States (Ioannidis et al.,
2020) and hence also cultural aspects might have influ-
enced the associations between genetics and IUDs,

which could explain some of the differences between
studies (Feldman and Laland, 1996; Kim et al., 2011).

Additionally, the genotypes of various polymorphisms
under investigation are differently distributed between
European and Asian samples (e.g., https://www.ncbi.nlm.
nih.gov/snp/rs1800497#frequency_tab; https://www.
ncbi.nlm.nih.gov/snp/rs4680#frequency_tab; https://
www.ncbi.nlm.nih.gov/snp/rs1044396#frequency_tab),
and this impacts statistical power when certain genetic
variants occurmore seldom ormore often in a given pop-
ulation. At the same time, the different cultural back-
grounds in conjunction with a nonreplication of
findings make it hard to judge whether nonreplicated
results between studies are due to different cultural back-
grounds or because effects really do not exist.

All of these disadvantages make it hard to draw a final
conclusion about which molecular genetic factors are
really associated with IUDs/Internet gaming disorder
and which are not. The only exceptions are the studies
by Montag et al. (2012) and Jeong et al. (2017), which
found the same molecular genetic variant (CHRNA4
rs1044396, C allele) to be associated with unspecified
IUD and Internet gaming disorder in samples from Ger-
many and South Korea. However, this association could
not be replicated in a third study by Park et al. (2018).

Table 27.2

Overview of the genetic polymorphisms putatively linked to unspecific IUD and/or Internet gaming disorder according to
previous studies

Gene
Associated with neurotransmitter/
neuropeptide/brain molecule Polymorphism References

Related to neurotransmitter systems
Dopamine receptor D2 (DRD2)/
ANKK1

Dopamine Taq1A/
rs1800497

Han et al. (2007)
(Paik et al., 2017)

Catechol-O-methyltransferase
(COMT)

Dopamine Val158Met/
rs4680

Han et al. (2007)
(Ioannidis et al., 2020)

Dopamine receptor D2 (DRD2) Dopamine -141C Ins/Del Paik et al. (2017)
Nicotinic acetylcholine receptor
subunit alpha 4 (CHRNA4)

Acetylcholine (dopamine) rs1044396 Montag et al. (2012)
Jeong et al. (2017)
(Park et al., 2018)

Serotonin transporter (SLC6A4) Serotonin 5-HTTLPR (short
vs long variant)

Lee et al. (2008)

Related to neuropeptide systems
Corticotropin-releasing hormone
receptor 1

(CRHR1)

Corticotropin-releasing hormone/
factor

rs28364027 Park et al. (2018)

Oxytocin receptor (OXTR) Oxytocin rs2268498 Sariyska et al. (2016)
(Sariyska et al., 2018)

Others
Neurotrophic tyrosine kinase
receptor, type 3 (NTRK3)

Neurotrophin 3 rs2229910 Kim et al. (2016)

Note: References in parentheses indicate studies that found nonsignificant associations between IUD and the specific polymorphism. The study by

Sariyska et al. (2018) did not specifically investigate IUD but only the use of the smartphone.
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In conclusion, some initial findings on molecular
genetic factors underlying IUDs are available. These
findings should guide further research on this topic.
However, clearly much more research with much larger
samples is necessary to replicate and/or test the robust-
ness of these previous findings. Promising candidate
neurotransmitters/neuropeptides seem to be related to
the dopaminergic and cholinergic systems, among
others. Aswe have outlined in the realm ofAffective Neu-
roscience Theory, oxytocin might also be an interesting
molecule to be studied in the context of IUDs. In addition
to testing the robustness of previous findings, we also
need to better understand why certain polymorphisms
of different systems might be linked to IUDs (see, for
example an association with the NTRK3 gene (Kim
et al., 2016)). Finally, we are of the opinion that IUDs
should be further investigated with a genome-wide-
based approach, something which (i) would shed light
on heritability estimates from a molecular perspective
and (ii) would yield perhaps new genetic candidate
markers to be investigated in the context of IUDs (for
recent research strategies in the study of molecular
genetics of individual differences, see Montag et al.,
2020a).
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