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ABSTRACT

Background and aims: Personality is one of the most frequently investigated variables to shed light on the
putatively addictive use of the smartphone. By investigating associations between personality and indi-
vidual differences in addictive smartphone use, researchers aim to understand if some personality traits
predispose technology users to develop addictive behaviors. Here, based on existing empirical literature,
we aimed at determining the strength of associations between Big Five personality traits and smartphone
use disorder (SmUD) by a meta-analytic approach. Method: For each Big Five personality trait, we
performed a meta-analysis of correlations representing their association with SmUD. We also investigated
possible publication bias and the moderating effects of age, gender, nationality, length of personality
assessments, and time of publication. Results: We found n 5 26 eligible studies. In line with both the
Interaction of Person-Affect-Cognition-Execution (I-PACE) model and the framework on problematic
mobile-phone use by Billieux, we observed a positive association between Neuroticism and SmUD (r 5
0.25), while the association between Extraversion and SmUD was not significant. Partially in line with the
aforementioned theoretical frameworks, Conscientiousness was negatively associated with SmUD (r 5
�0.16). Remaining traits showed smaller associations. No significant publication bias emerged. Moderator
analyses showed that time of publication moderated the link between Conscientiousness and SmUD.
Moreover, Agreeableness and Conscientiousness showed a heightened inverse association with SmUD
among older samples. Conclusions: The present meta-analysis provides robust empirical evidence that Big
Five personality traits can help to understand individual differences in SmUD, supporting the usefulness
of their assessment when planning and targeting interventions aimed at at-risk individuals.
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INTRODUCTION

Since the introduction of the IPhone as the prototype of the smartphone in 2007, the world
has seen a dramatic increase in the number of smartphone users. It is estimated that more
than 3.5 billion people currently use a smartphone worldwide (O’Dea, 2020). Therefore, the
smartphone is likely to be the technology distributed across the world faster than any other
technology before. Smartphones without doubt have seen a rapid and successful distribution
across the world, because they enable people to communicate efficiently via far distances, help
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to navigate in unknown territory, and provide infotainment
as long as a signal is available. Although smartphones can
result in greater productivity (e.g., finding your way from
place A to B faster), a growing number of researchers de-
bates potential detrimental effects of excessive smartphone
use on the individual.

Most often an addiction framework has been chosen to
characterize excessive smartphone use assessing symptoms
such as preoccupation with smartphone use, withdrawal
symptoms when not being online or productivity loss due to
fragmentation of everyday life (Duke & Montag, 2017b;
Haug et al., 2015; Kwon, Kim, Cho, & Yang, 2013; Lin et al.,
2014; Rozgonjuk, Sindermann, Elhai, & Montag, 2020;
Samaha & Hawi, 2016). Therefore, it is also not surprising
that some researchers characterize excessive smartphone use
as smartphone addiction, although this term is controver-
sially debated (Billieux, 2012; Panova & Carbonell, 2018).
Moreover, a focus on excessive use of the smartphone in
general might ultimately not be valid, because individuals
are most likely not hooked onto the device itself, but rather
to certain applications installed on their own smartphone
(Pontes, Szabo, & Griffiths, 2015). After all, an alcoholic is
similarly not dependent on the bottle, but on the alcohol in
the drink (Panova & Carbonell, 2018). In line with this
conceptualization, previous work shows a strong overlap
between smartphone addiction and excessive use of What-
sApp (Sha, Sariyska, Riedl, Lachmann, & Montag, 2019).
Other researchers use the term problematic smartphone use
(Elhai et al., 2018; Wang, Wang, Gaskin, & Wang, 2015), but
this term is also not optimal, because it is not clear whether
the “problematic” aspect of problematic smartphone use
represents the end-point of excessive use, or the transition
from mild use to excessive use.

In line with the terminology used by the World Health
Organization in the context of Gaming Disorder (Montag,
Schivinski et al., 2019; Pontes et al., 2019), we currently
prefer the term smartphone use disorder (SmUD) as a
mobile form of Internet Use Disorders (IUDs) (Montag,
Wegmann, et al., 2019). This said, we explicitly mention that
SmUD represents no official diagnosis in the International
Classification of Diseases 11th Revision (ICD-11) or the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-5) and researchers should refrain from over-
pathologizing everyday life behavior (Billieux, Schimmenti,
Khazaal, Maurage, & Heeren, 2015). Therefore, we explicitly
state that most studies in the field clearly investigated indi-
vidual differences in the tendencies towards SmUD (on a
subclinical level). Nevertheless, we use the SmUD term to
strive for unification of terms in the field of technology use
disorders in the literature; see also that other researchers use
this terminology; e. g. Gao, Jia, Fu, Olufadi, and Huang
(2020), Peng, Zhou, Wang, Zhang, and Hu (2020).

By looking at existing theoretical frameworks for IUDs,
Big Five personality factors emerge as important variables
that may also help explain individual differences in SmUD
(Duke & Montag, 2017a). The Big Five were derived against
the background of a lexical approach (McCrae & John, 1992;
Montag & Elhai, 2019; Montag & Panksepp, 2017), which

means that statistical analysis of language resulted in five
personality traits with relatively stable distribution around
the globe (for exceptions see discussion about non-WEIRD
samples in Laajaj et al. (2019), to name a recent critique).

In the context of SmUD, we take a closer look at two
theoretical frameworks: The Interaction of Person-Affect-
Cognition-Execution (I-PACE) model on specific IUDs
and Billieux’s framework on problematic mobile phone
use. The I-PACE model by Brand, Young, Laier, W€olfling,
and Potenza (2016) posits that individual differences in
IUD may be the result of a complex interaction of person,
affect, cognition, and execution variables. Of note, Montag
et al. (2015) and M€uller et al. (2017) demonstrated that
specific IUDs are associated with unspecified IUD, and
Montag, Wegmann, et al. (2019) recently explained that
SmUD could be seen as mobile form of IUD. In particular,
the overlap between Social Networks Use Disorder/
Internet Communication Disorder (a specific IUD) and
SmUD (Sha et al., 2019) provides a rationale to use the I-
PACE model as a theoretical framework to also study
SmUD. Focusing in particular on the Person component of
the I-PACE model, Brand et al. (2016) discussed the
relevance of personality traits, such as low Conscien-
tiousness and high Neuroticism as factors driving a
heightened risk for IUD.

On the other hand, the theoretical model by Billieux
(2012) is also noteworthy as it postulates multiple pathways
linking personality traits to problematic mobile phone use
(as the construct is named in the work by Billieux). In the
model by Billieux, Neuroticism is expected to increase the
risk of SmUD via the relationship maintenance pathway:
Individuals high in Neuroticism may try to control their
relationship status via compulsively checking social media
and instant messaging apps. The extraversion pathway posits
that individuals high in Extraversion may be inclined to
heightened smartphone use in order to fulfill their urges for
social interactions, although this component of the model is
not expected to lead to SmUD (Billieux, Maurage, Lopez-
Fernandez, Kuss, & Griffiths, 2015). Interestingly, in this
model the role of the Conscientiousness trait is not promi-
nently highlighted. But recent work highlights the important
role of Conscientiousness in research related to SmUD
(Lachmann, Duke, Sariyska, & Montag, 2019).

Due to the prominent role of personality in both the I-
PACE model (Brand et al., 2016) and also the model by
Billieux (2012), in the present study we aimed to synthesize
existing literature concerning the association between Big
Five personality factors and SmUD in the present study. In
detail, we perform a meta-analysis on correlations reported
in studies exploring putative links between Big Five per-
sonality factors and SmUD as assessed via self-report
questionnaires. For reasons of completeness, we not only
focus on the personality traits of Neuroticism and Extra-
version as discussed in the model by Billieux (2012), but on
all of the Big Five personality factors. This said, both the
theoretical assumptions of the I-PACE model and the model
by Billieux function as important guiding literature. We
expect higher Neuroticism to be linked to higher SmUD
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(Billieux, 2012; Brand et al., 2016), Extraversion not to be
linked to SmUD (Billieux, 2012; Brand et al., 2016), and
lower Conscientiousness to be linked to higher SmUD
(Brand et al., 2016). In this context, it is worthy to note that
a recent meta-analysis study (Carvalho, Sette, & Ferrari, 2018)
has investigated the link between pathological personality traits,
including Neuroticism, and SmUD (referred to as problematic
smartphone use in the study). In the study, the authors iden-
tified a positive link between SmUD and Neuroticism, but
because only two studies were included in the analyses, possible
moderators of the link, as well as publication bias, remained
unexplored. Further, the study did not investigate other Big
Five personality traits beyond Neuroticism.

In the present paper, we first illustrate in detail our
literature search strategy, and the study selection process.
Following this, we provide an overview of the characteristics
of selected studies, including information about de-
mographic characteristics, sampling strategy, and validity
and reliability of self-report instruments.

Next, we present the results of meta-analytical com-
putations. Firstly, we present the meta-analytical correla-
tions for associations between SmUD and Big Five
personality factors. Next, we look at possible publication
bias in the selected literature, and moderator effects. More
specifically, we aim to determine the impact of certain
characteristics of recruited samples (i.e., the distribution of
gender, age, and nationality), in affecting the strength of
associations between each personality variable and SmUD
severity. Further, we acknowledge existing differences in
the inventories used to assess personality, and explore the
stability of emerging associations when brief vs. longer
questionnaires were administered. Finally, the present
work investigates whether associations between personal-
ity and SmUD changed over the years. As smartphone
technology and models changed over time since their first
introduction to the market, including increasingly faster
mobile Internet connection capabilities, new applications
and features, it is reasonable to expect that these changes
may have affected the way personality traits relate to the
risk of developing SmUD. With the ever-increasing fea-
tures available on smartphones, we expect that their nature
(in terms of functions provided to the user) can become
more “addictive” for certain individuals, and this may be
reflected in changes in the association between SmUD and
some of the personality traits.

METHODS

Literature search

In order to identify papers investigating the association be-
tween Big Five personality traits and measures of SmUD, we
followed the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) guidelines (Moher
et al., 2015) and performed multiple searches in several
databases, using multiple groups of keywords. Identified
papers were then screened based on specific inclusion and

exclusion criteria. To perform the database searches, four of
the authors collaborated in creating a list of keywords which
could be used to identify papers investigating SmUD, namely
smartphone addiction, addictive smartphone us*, problematic
smartphone use/usage, smartphone us* disorder, smartphone
overus*, excessive smartphone us*, dependenc* on smart-
phone, smartphone dependenc*, maladaptive smartphone us*,
dysfunctional smartphone us*, smartphone abuse, addictive
smartphone us*. When applicable, an asterisk (*) was used as
as a truncation symbol to search the database for multiple
forms of the truncated terms. Additionally, for each of the
keywords above, we created alternative versions by
substituting the term smartphone with other terms that could
be used to refer to smartphones, in particular among early
studies, namely mobile, cell phone, cellphone, and mobile
phone. The resulting group of keywords was combined with
the following keywords referring to Big Five personality traits:
personality, traits, big 5, big five, five factor model, extraver-
sion, introversion, neuroticism, emotional stability, openness,
conscientiousness, agreeableness, extrovert, introvert, neurotic,
open, agreeable, conscientious, emotionally stable.

Using the resulting set of keywords, we conducted a
broad literature search in the following databases: Scopus,
ISI Web of Science, and PubMed (see Supplementary ma-
terial for the full search function in Scopus format). The
database literature search was finalized in March 2020. An
additional search was performed by inspecting citations
within publications identified as eligible to be included in
this meta-analysis, as well as relevant review papers (e.g.,
Busch & McCarthy, 2020; Carvalho et al., 2018). A flowchart
illustrating the selection process is shown in Fig. 1.

Inclusion and exclusion criteria

Papers identified through database and reference searches
were screened for the following inclusion criteria: (1) Studies
were published in a peer-reviewed journal; (2) Studies had to
include assessments of both SmUD, and Big Five personality
traits; (3) Studies (or their authors) had to provide infor-
mation about the effect size of the association between
SmUD and Big Five personality traits.

Exclusion criteria were the following: (1) Studies were
excluded from quantitative analyses if they did not provide
effect size information, or if this information could not be
obtained from the authors; (2) Studies did not assess
SmUD, but only investigated frequency of smartphone use
or similar constructs (e.g., time spent using smartphones,
or smartphone apps); (3) Studies were performed on
clinical populations; (4) Non-independence of studies. In
order to resolve the issue of non-independence of studies,
we deemed studies as non-independent when all of the
following criteria were fulfilled: (1) Studies were per-
formed on overlapping samples, (2) Correlations were
computed between the same Big Five, and (3) SmUD
measures. If we found two or more studies being non-in-
dependent based on the aforementioned criteria, the study
with the largest sample was selected for inclusion in the
quantitative analyses.
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Research coding

Selected studies were coded for relevant characteristics,
including demographic variables, sources of bias, and in-
formation about self-report assessment and time of publi-
cation. Coding of studies was performed by two independent
authors, which showed full agreement on all the coded
characteristics. The coded characteristics are shown below.

Sample characteristics. Each study was coded for number of
participants recruited, gender distribution (% of female
participants), age (mean and standard deviation), the
reference population, and country in which the study was
performed.

Sources of bias. Following PRISMA guidelines, selected
studies were assessed for possible sources of bias. For the
purpose of the present study, we followed recent recom-
mendations (Agarwald, Guyatt, & Busse, 2019) and
inspected studies for information on the following domains:
sampling strategy used to recruit participants (random vs.

convenience sampling), availability of information about
response rate, missing data, and validity and reliability of
survey instruments. Validity of survey instruments was
ascertained if assessment was performed using a previously
validated instrument, while reliability was evaluated based
on Cronbach’s a.

Length of personality assessment. A key factor that may
influence the strength of associations between personality
and SmUD severity is related to the length of the personality
assessment employed by studies (i.e., the number of
administered items). Selected studies employed a variety of
questionnaires assessing Big Five personality traits: the NEO
Personality Inventory (NEO PI-R) (Costa & McCrae, 1992),
NEO-Five Factor Inventory (NEO-FFI) (Costa & McCrae,
1992), Ten-Item Personality Inventory (TIPI) (Gosling,
Rentfrow, & Swann, 2003), International Personality Item
Pool scales (IPIP NEO-PI-R) (Goldberg, 1999), IPIP-20
(Donnellan, Oswald, Baird, & Lucas, 2006), Mini Markers
Questionnaire (Saucier, 1994), Big Five Inventory (BFI)
(John, Naumann, & Soto, 2008), the BFI – 10 (BFI-10)

Fig. 1. Flow diagram of study selection
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(Rammstedt & John, 2007), BFI-S (Lang, John, L€udtke,
Schupp, & Wagner, 2011), and a shortened version of the
Trait Self-Description Inventory (TSDI) (Christal, 1994).
These questionnaires vary significantly in their length,
ranging from 300 items (e.g., the IPIP NEO-PI-R) to just 10
items (e.g., the TIPI and BFI-10). In the present study, for
the purpose of comparing questionnaire length, we coded
studies distinguishing between those using brief assessments
(10 items) versus longer assessments (>10 items).

Time of publication. Since the first introduction of smart-
phones to the market, significant changes and improvements
have been introduced making the smartphone more and
more attractive, possibly affecting the way personality traits
relate to the risk of developing SmUD. Here, we also tested
for the impact of time of publication on the studied re-
lationships (i.e., correlations between personality traits and
SmUD). For the purpose of the present study, in order to
investigate potential time-related differences in effect sizes,
we coded studies based on their year of publication.

Strategy of analyses

For each association between Big Five personality traits and
SmUD examined in the selected studies, an effect size was
collected. More specifically, we retrieved the correlation
coefficients (Pearson or Spearman) expressing the relation-
ship between SmUD and each Big Five personality trait. For
the purpose of computing the meta-analytic correlations, we
chose not to transform correlations into Fisher’s z scores
because this transformation leads to an overestimation that
exceeds the underestimation typically observed when using
untransformed correlations (Hunter, Schmidt, & Jackson,
1982). When studies did not report correlations, we con-
tacted the first and/or corresponding authors of the study to
obtain any missing information. Missing correlations were
obtained for nine studies (n 5 9).

We conducted a separate meta-analysis for each Big Five
trait. Meta-analyses were performed using a random-effects
model as the true effect size was likely to vary across studies
due to significant heterogeneity in the characteristics of
questionnaires used to assess personality and SmUD, cul-
tural context, and sample characteristics. Grubb’s test was
used to identify outliers. Heterogeneity of effect sizes was
determined using the following statistics: (1) Q test of het-
erogeneity, (2) Ƭ2 estimate of true between-study variance,
and (3) the I2 statistic of proportion of true variation in
observed effects.

Publication bias was investigated by inspecting the fun-
nel plot of an included study’s effect size against its standard
error. For the purpose of detecting asymmetry, estimation
was performed on transformed effect sizes (Fisher’s Z
transformation). Symmetry of the funnel plot was deter-
mined by using the rank correlation test by Begg and
Mazumdar (1994), and Egger’s intercept test (Sterne &
Egger, 2001). Classic fail-safe N was used to determine the
“file drawer” effect, which is the number of missing studies
that would nullify a significant meta-analytic correlation.

Finally, Duval and Tweedie’s trim and fill procedure (Duval
& Tweedie, 2000) was used to determine the existence of
potentially missing studies on the left and right side of the
funnel plot based on the distribution of effect-sizes. If
missing studies were found, imputation was performed in
order to compute an unbiased estimate of effect.

Then, effect of dichotomous or continuous moderators
(i.e., gender, sample age, length of personality questionnaires,
year of publication of the studies) was measured via random-
effects univariate meta-regressions using restricted
maximum-likelihood estimation. A priori evaluation of po-
wer for moderator tests was performed based on existing
recommendations (Hedges & Pigott, 2004). For the purpose
of analysis, length of questionnaire was operationalized using
a dichotomous variable coded 0 for brief questionnaires
including ≤10 items, and 1 for questionnaires including
more than 10 items. Year of publication was coded as a
continuous variable ranging from 2008 to 2020. Gender-
related effects were examined using a continuous indicator
representing the percentage of female participants in each
sample. In coding age, we created a categorical variable dis-
tinguishing between studies performed on samples including
mostly adolescent and young adult participants aged ≤26,
and samples including also a non-negligible group of older
adults. Samples for which mean age þ2 SD was ≤26, were
coded as 0, while remaining studies were coded as 1. If
studies did not report information about mean age, we
looked at the percentage of individuals in each age group. For
all moderator effects, we report the unstandardized regres-
sion coefficients and relative standard errors, R2 representing
the percentage of variance explained, and information on
heterogeneity statistics. For the purpose of investigating ef-
fects related to differences between countries, we grouped
studies distinguishing studies analyzing samples from En-
glish-speaking countries (i.e., Australia, USA, and United
Kingdom), mainland Europe (i.e., Austria, France, Germany,
Italy, Norway, Romania, and Spain), middle-east (Israel,
Turkey) and far-east (i.e., South Korea, Japan). Significance
of between-group differences was established by computing
the Q statistics, as well as non-overlapping 95% confidence
intervals. In order to conduct moderator analyses, and to
acquire acceptably robust coefficient estimates, we followed
the suggestion by Fu and colleagues and examined the effect
of moderators only if at least 4 studies per group were
available (Fu et al., 2011). All analyses were performed using
the Comprehensive Meta-Analysis software, version 3 (Bor-
enstein, Hedges, Higgins, & Rothstein, 2005).

RESULTS

Overview of included studies

In total, we identified 33 papers investigating data including
information about SmUD and Big Five personality scores.
After exclusion of six papers for which no information about
zero-order correlations could be retrieved (Delevi & Weis-
skirch, 2013; Lee, 2015; Mosalanejad, Nikbakht,
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Abdollahifrad, & Kalani, 2019; Panda & Jain, 2018; Pearson
& Hussain, 2015; Prasad et al., 2018), 27 papers remained.
After inspection of studies for non-independence, we found
n 5 2 non-independent studies (Trub & Barbot, 2016,
2020). Samples from this study were largely overlapping, and
recruited participants completing the same personality and
SmUD measures. To resolve this issue, we selected the study
examining the larger sample (Trub & Barbot, 2020) for in-
clusion in the meta-analysis, while the other study (Trub &
Barbot, 2016) was not included. Additionally, we found two
papers (Smetaniuk, 2014; Trub & Barbot, 2020) reporting
more than one correlation representing the association be-
tween personality and SmUD. More specifically, Smetaniuk
(2014) explored the associations between Big Five person-
ality traits and both the Mobile Phone Problem Use Scale
(Bianchi & Phillips, 2005) and the Adapted Cell Phone
Addiction Test (ACPAT) (Smetaniuk, 2014). Trub and
Barbot (2020) explored the association between personality
scores and three subscales of the Problematic Mobile Phone
Use Scale (G€uzeller & Coşguner, 2012), namely, Negative
Effect, Withdrawal/Tolerance, and Compulsion/Persistence,
but did not provide information about correlations with the
total score. In both these cases, because correlations were
performed on the same sample using scores referring to the
same broad construct (i.e., SmUD), but either different in-
struments or set of items were used to compute the scores,
we retained all available information in the analyses by
averaging effect sizes computed on the same sample.

Eventually, we ended up with 26 independent studies,
including 130 distinct effect sizes. Sample characteristics of
selected studies are reported in Table 1. Mean sample size of
included studies was 441.79 (SD5240.24), ranging from 132
(Ezoe et al., 2009) to 982 (Trub & Barbot, 2020) participants.
The majority of studies were performed on convenience
samples (n 5 23), and only a minority reported use of
random sampling in recruiting participants (n 5 3). Only
one study reported information about response rate, and the
majority of studies (n 5 16) failed to provide information
about handling of missing data.

Overall, recruited samples showed significant gender
imbalance, with n 5 17 studies reporting samples including
≥60% female participants, n 5 2 reporting samples
including ≥60% male participants, and only n 5 7 studies
reporting balanced samples (from 46.41% to 50.20% of fe-
males). Mean age of samples ranged from 14.64 (Garc�ıa-
Oliva & Piqueras, 2016) to 41.12 (Hwang & Jeong, 2015),
with a mean value of 23.32 years (SD 5 5.59) across studies.
A minority of studies (n 5 4, see Table 1) did not include
information about mean age, but only reported frequencies
for different age groups, hence, information from these
studies are not included in the calculation above. The ma-
jority of studies were performed on samples of either
adolescent or university students (n 5 15), while a relatively
smaller group of studies (n 5 11) were performed on either
adult parents (n 5 1), or general population samples (n 5
10). Included studies were diverse with regard to country of
residence of recruited participants: The majority of studies
were performed on samples collected in European countries

(n 5 12, Austria, Germany, Italy, Norway, Romania, Spain,
and United Kingdom); samples from remaining studies were
recruited in the United States (n 5 4), Australia (n 5 2),
Israel (n 5 2), South Korea (n 5 2), Japan (n 5 2), Turkey
(n 5 1), or on international, English-speaking samples
(n 5 1).

Characteristics of self-report instruments used in selected
studies are reported in Table 2. All studies used previously
validated instruments to assess Big Five traits, including
either original or revised versions of the TIPI (n 5 7), NEO-
FFI (n 5 6), IPIP scales (n 5 4), BFI-44 (n 5 2), BFI-10
(n 5 3; or an alternative short BFI version, the BFI-S, n 51),
the NEO-PI-R (n 5 1), a short version of the TSDI (n 5 1),
and the Mini Markers (n 5 1) questionnaire. Reliability of
personality assessments was reported by n 5 19 studies,
while n 5 7 studies failed to report this information. In all
studies, reliability was comparable to the one reported in
their relative validation studies. As expected, reliability
values for short assessments (questionnaire length ≤10
items) was generally lower than those reported for longer
instruments.

Regarding the questionnaires used to assess SmUD, n 5 5
studies reported using custom questionnaires (i.e., question-
naires with items were specifically developed for the study, or
adapted from other questionnaires). Remaining studies used
previously validated questionnaires, namely the Smartphone
Addiction Scale (n 5 3) (SAS; Kwon, Lee, et al., 2013),
Smartphone Addiction Scale – Short Version (n 5 3) (SAS-
SV; Kwon, Kim, et al., 2013), Mobile Phone Problematic Use
Scale (n5 5) (MPPUS; Bianchi & Phillips, 2005), Smartphone
Addiction Symptoms Scale (n 52) (SAPS; Bian & Leung,
2015), the Adapted Cell Phone Addiction Test (n 51)
(ACPAT; Smetaniuk, 2014), Questionnaire of Experiences
Related to Mobile Phones (n 5 1; also referred to as Cues-
tionario de Experiencias Relacionadas con el M�ovil, or CERM,
in Spanish) (Beranuy, Chamarro, Graner, & Carbonell, 2009),
Mobile Phone Addiction Index (n 51) (MPAI, Leung, 2007),
Problematic Mobile Phone Use Scale (n5 1) (PMPU; G€uzeller
& Coşguner, 2012), Smart-Phone Addiction Inventory (n5 1)
(SPAI; Lin et al., 2014), Mobile Phone Dependence Ques-
tionnaire (n51) (MPDQ; Toda, Monden, Kubo, & Morimoto,
2004), Mobile Phone Usage Addiction Scale (n 51) (MPUAS;
Karada�g et al., 2015), revised Problematic Mobile Phone Use
Questionnaire (n 51) (PMPU-Q; Kuss, Harkin, Kanjo, &
Billieux, 2018), and the Self-Assessment Scale (n 5 1) (S-Scale,
National Information Society Agency, 2011). Except for n 5 2
studies that failed to include reliability coefficients, reported
reliability of SmUD assessments was acceptable for all studies
(Cronbach' a ranging from 0.66 to 0.96).

Meta-analytic computations

Mean effect size. Before computing meta-analytical com-
putations, Grubb’s test was applied to effect size data for
each personality trait. Grubb’s test failed to identify any
outliers, resulting in no effect sizes being excluded from
subsequent analyses.
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Next, in order to establish the magnitude of associations
between SmUD severity and each of the Big Five personality
traits, we conducted one separate meta-analysis for each
individual personality trait, analyzing effect size data
collected from different numbers of studies, depending on
the specific trait (Openness: n 5 23; Conscientiousness: n 5
23; Extraversion: n 5 26; Agreeableness: n 5 22; Neuroti-
cism: n 5 25). Forest plots of effect sizes included in the

meta-analyses are presented in Figs. 2–6. The estimated
meta-analytic correlations are presented in Table 3, along-
side Q tests for heterogeneity, Ƭ2, and I2 statistics. Overall,
Neuroticism showed the strongest positive meta-analytic
correlation with SmUD severity (r5 0.25 [0.21, 0.29]), while
Conscientiousness showed the strongest negative meta-an-
alytic correlation (r 5 �0.16 [�0.20, �0.16]). Meta-analytic
correlations for Openness (r 5�0.08 [�0.12, �0.04]) and

Table 1. Sample characteristics of studies included in the meta-analysis

Study name

Sample characteristics

N
Mean age

(SD) Reference population
Female
(%) Country

Sampling
strategy

% of valid
data

Andreassen et al. (2013) 218 20.7 (3.0)b University students 79.16 Norway Convenience –
Augner & Hacker (2012) 196 20.1 (3.2)b University students 76.53 Austria Convenience –
Cho, Kim, and Park (2017) 400 20–49a General population 48.50 South Korea Convenience –
Cocorad�a, Maican, Cazan,
and Maican (2018)

717 19.8 (–)b Adolescent and university
students

65.00 Romania Convenience –

De Pasquale, Sciacca, Conti,
Dinaro, and Di Nuovo
(2019)

400 21.6 (1.4)b University students 61.00 Italy Convenience 93%

Demirhan, Randler, and
Horzum (2016)

902 20.4 (1.9)b University students 73.00 Turkey Convenience –

Ehrenberg, Juckes, White, &
Walsh (2008)

200 19.1 (1.8)b University students 73.00 Australia Convenience –

Ezoe et al. (2009) 132 24.5 (5.7) University students 100.00 Japan Convenience –
Garc�ıa-Oliva & Piqueras
(2016)

304 14.6 (1.7)b Adolescents 48.60 Spain Convenience –

Guazzini, Duradoni, Capelli,
and Meringolo (2019)

394 24.2 (9.14) General population 84.80 Italy Convenience 92%

Herrero, Urue~na, Torres, and
Hidalgo (2019a)

526 15þa General population 48.10 Spain Random
sample

–

Herrero, Urue~na, Torres, and
Hidalgo (2019b)

416 15þa General population 47.80 Spain Random
sample

63%

Horwood & Anglim (2018) 398 24.4 (7.1) University students 79.00 Australia Convenience 79%
Hussain, Griffiths, and
Sheffield (2017)

640 24.9 (8.5) General population 65.60 United
Kingdom

Convenience 74%

Hwang & Jeong (2015) 460 41.1 (3.6) Adult parents 50.20 South Korea Random
sample

77%

Kita & Luria (2018) 221 19.3 (1.7)b Young drivers 35.29 Israel Convenience 92%
Kruger & Djerf (2017) 766 19.0 (1.0)b University students 50.13 USA Convenience –
Lachmann et al. (2019) 572 23.6 (5.9) University students 72.03 Germany Convenience –
Mitchell & Hussain (2018) 147 31.0 (13.0) General population 69.40 United

Kingdom
Convenience 83%

Peterka-Bonetta,
Sindermann, Elhai, and
Montag (2019)

773 23.1 (7.3) General population 60.80 English-
speaking

Convenience –

Pivetta, Harkin, Billieux,
Kanjo, and Kuss (2019)

508 25.5 (9.9) General population 78.30 United
Kingdom

Convenience –

Smetaniuk (2014) 362 32 (–) General population 46.41 USA Convenience 83%
Takao (2014) 504 20.1 (1.4)b University students 21.43 Japan Convenience 83%
Trub & Barbot (2020) 982 24.5 (3.4) Young drivers 60.00 USA Convenience –
Volungis, Kalpidou, Popores,
and Joyce (2019)

150 19.3 (–)b University students 83.20 USA Convenience –

Zhitomirsky-Geffet & Blau
(2016)

209 13–68a General population 63.00 Israel Convenience 97%

a Studies did not reported mean age values: range is reported.
b Studies focusing on adolescents and young adults aged ≤26.
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Table 2. Characteristics of self-report instruments used in studies included in the meta-analysis

Study name

Big Five personality Smartphone use disorder

Questionnaire,
# of items Assessed traits Reliability (a) Questionnaire

Reliability
(a)

Andreassen et al. (2013) NEO-FFI-R, 60 O, C, E, A, N 0.77–0.85 MPAI 0.84
Augner & Hacker (2012) TIPI, 10 O, C, E, A, N Not reported Custom questionnaire 0.90
Cho et al. (2017) Adapted NEO-PI-R, 25 O, C, E, A, N 0.65–0.86 S-Scale 0.77
Cocorad�a et al. (2018) IPIP, 50 O, C, E, A, N 0.71–0.81 SAS-SV 0.86
De Pasquale et al. (2019) TIPI, 10 O, C, E, A, N 0.40–0.73 SAS-SV 0.85
Demirhan et al. (2016) TIPI, 10 O, C, E, A, N 0.70–0.75 MPPUS 0.90
Ehrenberg et al. (2008) NEO-FFI, 60 O, C, E, A, N 0.68–0.84 Custom questionnaire 0.69
Ezoe et al. (2009) NEO-FFI, 60 E, N Not reported MPDQ 0.86
Garc�ıa-Oliva & Piqueras (2016) TIPI, 10 O, C, E, A, N Not reported CERM 0.66
Guazzini et al. (2019) TIPI, 10 O, C, E, A, N Not reported MPUAS 0.78–0.86
Herrero et al. (2019a) BFI, 10 O, C, E, A, N Not reported SAPS Not reported
Herrero et al. (2019b) BFI, 10 O, C, E, A, N ≥ 0.65 SAPS Not reported
Horwood & Anglim (2018) IPIP, 300 O, C, E, A, N 0.89–0.96 MPPUS 0.91
Hussain et al. (2017) TIPI, 10 O, C, E, A, N 0.29–0.69 Custom questionnaire 0.86
Hwang & Jeong (2015) BFI-S, 15 O, C, E, A, N 0.59–0.91 Custom questionnaire 0.90
Kita & Luria (2018) IPIP, 20 O, C, E, A, N 0.69–0.79 SAS-SV 0.79
Kruger & Djerf (2017) TIPI, 10 O, C, E, A, N Not reported MPPUS 0.82
Lachmann et al. (2019) NEO-FFI, 60 O, C, E, A, N 0.75–0.86 SAS 0.98
Mitchell & Hussain (2018) Mini Markers, 40 E 0.86 Custom questionnaire 0.86
Peterka-Bonetta et al. (2019) TSDI, 42 O, C, E, A, N 0.79–0.87 SPAI 0.95
Pivetta et al. (2019) BFI, 10 C, E, N 0.42–0.45 PMPU-Q 0.86
Smetaniuk (2014) IPIP, 50 E, N 0.72–0.93 ACPAT, MPPUS 0.96–0.96
Takao (2014) NEO FFI, 60 O, C, E, A, N Not reported MPPUS 0.9
Trub & Barbot (2020) BFI, 44 O, C, E, A, N 0.81–0.87 PMPU 0.80–0.87
Volungis et al. (2019) NEO FFI, 60 O, C, E, A, N 0.89 SAS 0.78–0.86
Zhitomirsky-Geffet & Blau (2016) BFI, 44 O, C, E, A, N 0.68–0.88 SAS 0.97

Note: O, Openness; C, Conscientiousness; E, Extraversion; A, Agreeableness; N, Neuroticism.

Fig. 2. Forest plot of effect sizes for the association between smartphone use disorder severity and Openness
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Agreeableness (r 5�0.06 [�0.09, �0.02]) were negligible in
size, but significantly different from zero. In turn, Extra-
version showed a non-significant meta-analytic correlation
(r 50.02 [�0.01, 0.06]). Results of Q tests for heterogeneity

were significant for each trait. However, for all traits, Ƭ2 did not
exceed 0.01, indicating low between-study heterogeneity.
Additionally, for all traits, observed dispersion of effect sizes
was mostly due to true heterogeneity (I2 ≥ 68.16).

Fig. 3. Forest plot for effect sizes of the association between smartphone use disorder severity and Conscientiousness

Fig. 4. Forest plot for effect sizes of the association between smartphone use disorder severity and Extraversion
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Publication bias. We inspected the funnel plots of standard
error versus the correlation (given as Fisher’s z) (see Figs.
S1–S5 in the Supplementary Material). For each Big Five
trait, the funnel plot was symmetric, suggesting lack of
publication bias. For each trait, non-significant Begg and

Mazumdar tests (Openness: P 5 0.25, Conscientiousness:
P 5 0.06; Extraversion: P 5 0.35; Agreeableness: P 5 0.75;
Neuroticism: P 5 0.21) and Egger’s tests (Openness: P 5
0.17, Conscientiousness: P 5 0.06; Extraversion: P 5 0.28;
Agreeableness: P 50.45; Neuroticism: P 5 0.08) further

Fig. 5. Forest plot for effect sizes of the association between smartphone use disorder severity and Agreeableness

Fig. 6. Forest plot for effect sizes of the association between smartphone use disorder severity and Neuroticism
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indicated no significant evidence of asymmetry in the funnel
plot, suggesting no publication bias.

Except for Extraversion, for each trait the fail-safe N
(Openness: N 5 334; Conscientiousness: N 5 1,729;
Agreeableness: N 5 154; Neuroticism: N 5 4,362) value was
significantly larger than the recommended rule-of-thumb
limit as computed for each trait (5 3 number of effect sizes
þ10; Rosenthal, 1979). For Extraversion, the estimated fail-
safe N was 18, below the computed rule-of-thumb limit of
140, further supporting the non-significance of the meta-
analytic correlation emerging for the trait.

Finally, we used Duval and Tweedie’s trim and fill pro-
cedure to detect potentially missing studies on the left and
right of the funnel plot. For all the traits, except for the
Openness trait, the procedure indicated no studies were
missing on the left and right side of the plot. Regarding the
Openness trait, the procedure detected one study potentially
missing on the right side of the plot (i.e., a study reporting a
positive effect-size). However, after imputation of the
missing study, the overall effect-size of association between
Openness and SmUD was unchanged (Point Estimate 5
0.08; Imputed Point Estimate 5 0.08), suggesting the bias to
be negligible. Combined, results of these tests indicate that it

is unlikely that publication bias posed a significant threat to
validity of the findings reported in the current analyses.

Moderator analyses. Results of moderation analyses are
shown in Table 4. Please note that based on a priori power
computations assuming random-effects, high heterogeneity
across studies, and n 5 25 expected studies, power for all
moderator effects was expected to be below acceptable
thresholds (power <0.80), except for large effects. Still,
because the recruited number of studies for each association
was either above or just below sample-size recommenda-
tions for detecting linear patterns in meta-regression ana-
lyses (Jenkins & Quintana-Ascenscio, 2020), we decided to
perform the analyses. Results should be seen in view of these
considerations.

First, we examined possible effects related to sample
characteristics, namely the distribution of gender and age in
the samples. Results showed no significant moderation ef-
fects for gender. In turn, we found older age was associated
with an increase in strength of the negative association be-
tween SmUD, and both the Agreeableness and Conscien-
tiousness traits. More specifically, when examining the link
between these traits and SmUD, studies performed on older

Table 3. Meta-analytic correlations and heterogeneity statistics between smartphone use disorder and Big Five personality traits

Trait Point estimate [95% CI] Z Q (df) I2 Ƭ2 Ƭ

Openness �0.08 [�0.12, �0.04] �4.28** 74.45 (21)** 71.79 0.01 0.07
Conscientiousness �0.16 [�0.20, �0.12] �8.03** 95.70 (22)** 77.01 0.01 0.09
Extraversion 0.02 [�0.01, 0.06] 1.34 83.19 (25)** 69.95 0.01 0.07
Agreeableness �0.06 [�0.09, �0.02] 3.08* 67.34 (21)** 68.16 <0.01 0.07
Neuroticism 0.25 [0.21, 0.29] 9.96** 102.58 (24)** 76.60 0.01 0.09

Note: *P < 0.01 **P < 0.001.

Table 4. Moderator analyses

Effect Trait Coefficient SE R2 I2 Ƭ2 Ƭ

Length of assessment Openness �0.03 0.04 0.00 72.72 0.01 0.08
Conscientiousness �0.01 0.04 0.00 78.00 0.01 0.09

Extraversion 0.01 0.04 0.00 71.14 0.01 0.08
Agreeableness �0.06 0.04 0.13 65.45 <0.01 0.07
Neuroticism 0.06 0.04 0.16 75.45 0.01 0.09

Year of publication Openness 0.00 0.01 0.00 72.82 0.01 0.08
Conscientiousness �0.02** 0.01 0.26 74.75 0.01 0.08

Extraversion �0.01 0.01 0.06 68.78 0.01 0.08
Agreeableness �0.01 0.01 0.00 66.62 0.01 0.07
Neuroticism 0.00 0.01 0.00 77.55 0.01 0.10

Gender Openness �0.08 0.13 0.00 72.90 0.01 0.08
Conscientiousness �0.17 0.13 0.08 74.36 0.01 0.08

Extraversion �0.12 0.12 0.02 69.58 0.01 0.08
Agreeableness �0.07 0.12 0.00 70.02 <0.01 0.07
Neuroticism 0.05 0.13 0.00 77.55 0.01 0.10

Age Openness 0.01 0.04 0.00 73.15 0.01 0.08
Conscientiousness �0.08* 0.04 0.15 74.64 0.01 0.08

Extraversion �0.04 0.04 0.03 68.95 0.01 0.01
Agreeableness �0.10** 0.03 0.61 49.61 <0.01 0.04
Neuroticism �0.06 0.05 0.02 76.45 0.01 0.09

Note: *P < 0.05 **P < 0.01.
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samples tended to report stronger (negative) effects than
studies performed on samples consisting of mostly adoles-
cents and young adults aged ≤26 years old.

Regarding the effects of study nationality, because we
could only observe a small number of studies in the middle-
east group (n 5 3), we did not compute the Q test of het-
erogeneity of effect sizes. Still, for each personality trait, we
computed the point estimate of effect-sizes and relative 95%
confidence intervals in each group (see Table S1 in the
Supplementary Material). Based on this information, no
relevant group-differences emerged.

Next, we examined effects of length of the personality
assessment on strength of the association between person-
ality scores, and SmUD scores: no significant moderating
effects emerged. Finally, we examined the effect of the year
of publication of included studies on the strength of
observed effect sizes. Results showed that time of publication
was associated with increased strength of the negative as-
sociation between Conscientiousness and SmUD. Hence,
when examining the link between Conscientiousness and
SmUD, recent studies tended to report stronger (negative)
effects than older studies. No significant moderating effects
emerged for the remaining personality traits.

DISCUSSION

The aim of the present work was to perform a meta-analysis
of studies investigating the link between personality and
SmUD. In light of available theories on SmUD it has been
proposed that from the Big Five of personality, in particular
Neuroticism should be positively related to SmUD severity.
This association could indeed be observed (r 5 0.25) giving
support for Billieux’s (2012) idea of an existing relationship
assurance pathway. In this realm, individuals with higher
scores on Neuroticism are more likely to develop higher
tendencies towards SmUD due to seeking reaffirmation of
being part of a social group via excessively checking social
media apps, etc. (e.g., Marengo, Poletti, & Settanni, 2020). In
fact, recent work has supported the relationship between
greater levels of excessive reassurance seeking and SmUD
severity (Elhai et al., 2020).

The second strongest associations among the Big Five
personality traits was an inverse link between Conscien-
tiousness and SmUD severity (r 5 �0.16). Such an associ-
ation was not discussed in the work by Billieux (2012), but
appears in the I-PACE model by Brand et al. (2016). In
general, we believe such an inverse association to be a good
fit with the large body of substance use disorder literature
mentioning that individuals with low self-regulation abilities
(see also links with low self-directedness out of Cloninger’s
biosocial theory of personality; Cloninger, 1994) are prone
to develop higher addictive tendencies in many areas (Sar-
iyska et al., 2014; Terracciano, L€ockenhoff, Crum, Bienvenu,
& Costa, 2008). Not surprisingly, low Conscientiousness has
also been linked to lower health behavior (Bogg & Roberts,
2004). We believe that low Conscientiousness did not appear

to be of relevance in Billieux’s framework, because such an
association has appeared only recently in the literature, due
to smartphones probably having developed into more
“addictive” devices over time, given the many social media
and Freemium games available (Montag, Lachmann, et al.,
2019). This idea is supported by our meta-analysis, showing
that such Conscientiousness–SmUD associations have been
stronger in recent years compared to what has been pub-
lished in the early years of the smartphone era.

As expected from the model by Billieux (2012), Extra-
version was not linked to SmUD in our meta-analysis.
Therefore, fulfillment of the urge to communicate and so-
cialize with other individuals via the smartphone (and the
respective applications) may not result in addictive behavior
related to the smartphone, hence, SmUD. Therefore, social
use of the smartphone seems not to contribute to SmUD
(Elhai, Hall, et al., 2017; Elhai, Levine, et al., 2017). As
regards the Agreeableness and Openness traits, overall as-
sociations with SmUD were negative, but small-sized.

The present study also investigated gender- and age-
related differences in the association between personality
and SmUD. We did not find indicators of gender differences
in the association between personality and SmUD.
Regarding age, we found that the negative associations be-
tween SmUD and Conscientiousness as well as Agreeable-
ness were stronger in samples including older adults, when
compared to samples of adolescents and young adults. These
findings may be understood in light of known age-related
changes in these personality traits (e.g., both traits are
known to be higher among older adults when compared to
young adults; Allemand, Zimprich, & Hendriks, 2008;
Donnellan & Lucas, 2008), and personal responsibilities –
e.g., work and family responsibilities. Because individuals
high on Conscientiousness and Agreeableness are more
likely to use problem-focused and social-support coping
strategies when dealing with daily stressors (Penley &
Tomaka, 2002), they may be less likely to use technology
(e.g., smartphones) as a form of avoidance strategy (Busch,
P. A., & McCarthy, 2020). As individuals enter adulthood,
and responsibilities increase, these traits may play a key role
in helping them deal more successfully with stress (for such
personality changes see Bleidorn, Hopwood, & Lucas, 2018),
and ultimately protect them from developing SmUD.

The present meta-analysis also provided us with the
opportunity to investigate potential publication bias in the
literature. We failed to find consistent evidence of publica-
tion bias for any of the Big Five–SmUD associations. In sum,
publication bias does not play a role in the present work.
Additionally, from a psychometric point of view, we could
not find significant evidence that length of personality
assessment affected the strength of association between
personality and SmUD.

At the same time, by taking a broad look at existing
studies exploring the association between personality and
SmUD, the present study was able to highlight existing
limitations in the current literature. Our biggest concerns
relate to the scarcity of studies recruiting representative
samples, as the majority of the studies surveyed in this
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manuscript employed convenience samples. Moreover, there
appears to be an overrepresentation of studies performed on
samples of university students, typically showing an over-
representation of women. For this reason, generalizability of
results to the general population appears limited. Finally,
most of the selected studies were implemented in English-
speaking or European countries, while studies from other
regional and cultural areas were scant, suggesting the need
for increased diversity in this research area. This is partic-
ularly important given existing known cultural differences in
the distribution of personality traits (e.g., Neuroticism, Lynn
& Martin, 1995; Openness, Schmitt, Allik, McCrae, & Benet-
Mart�ınez, 2007), and their association with health-related
outcomes, potentially including SmUD.

Limitations and directions for future research

The present work has several limitations. First of all, the
present meta-analysis investigated cross-sectional studies. For
this reason, it is not clear whether certain personality traits
actually result in higher or lower SmUD, or whether such
individual differences in personality are a result of the addic-
tive smartphone use. Both directions of effects are possible. For
example, spending an increasing amount of time on the
smartphone most likely leads to neglecting other duties, e.g.,
work tasks, which might also result in a less conscientious self-
description. Nevertheless, personality is rather stable
(Edmonds, Jackson, Fayard, & Roberts, 2008) (but see for
recent evidence how personality changes due to critical life
events in Bleidorn et al. (2018)) and in line with theory (Bil-
lieux, 2012; Brand et al., 2016), we believe the former expla-
nation to be true (i.e., individual differences in personality
result in higher or lower SmUD). Still, it must be acknowl-
edged that also in the I-PACE model feedback loops are
included, which suggest an effect (not only from personality to
SmUD but also) from SmUD on personality. In conclusion,
future research should consider adopting a longitudinal
approach, as this would help clarify the directions of emerging
links between personality and SmUD. A second limitation is
the focus of our meta-analysis on the Big Five personality
traits. Although the Big Five are the most widely studied traits
in the literature dealing with SmUD, a focus on other per-
sonality traits can also be important. For example, Billieux
(2012) mentioned the relevance of the impulsivity trait, which
is not covered in the present work. In detail, Billieux (2012)
proposes an impulsive pathway describing individuals with
low self-regulation abilities, and heightened risk behavior in
the context of smartphones such as using the phone while
driving. Another limitation concerns our inability to deter-
mine the prevalence of smartphone use in the samples of some
of the studies published in early days of the smartphone era,
which may have included individuals currently using mobile
phones with limited Internet capabilities (i.e., mobile phones
using GSM technology). Findings concerning the effect of time
of publication on the association between personality and
SmUD should be considered in light of this limitation.

Finally, the relatively small number of studies surveyed
here limited our ability to detect small-sized moderation

effects, leading to low statistical power when performing
meta-regressions. As availability of newer studies will in-
crease, the ability to detect these effects will improve. In
particular, as noted above, there appears to be a need for
more studies performed on samples including a more
balanced representation of gender and age groups. Lack of
representative samples also represents an important limita-
tion of existing literature, limiting generalizability of results
to the general population.

CONCLUSIONS

Despite these issues, the present meta-analysis observed
robust associations of higher Neuroticism and lower
Conscientiousness with higher tendencies towards SmUD.
The results fit well with the theoretical assumptions of the I-
PACE model and also in part with Billieux’s framework on
problematic mobile phone use. These findings indicate that
the assessment of personality is of high relevance to un-
derstand who in particular is at risk for smartphone overuse.
This information could be used to develop prevention pro-
grams directed at individuals with personality profiles that
might be more vulnerable to develop SmUD. Possibly, in-
terventions should aim at providing at-risk individuals with
ways to cope with daily stressors, and consequently negative
emotions, as an alternative to using their smartphone and
thus ultimately protecting them from developing SmUD.
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