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ABSTRACT
Objectives: Research during prior virus outbreaks has examined
vulnerability factors associated with increased anxiety and fear.
Design: We explored numerous psychopathology, sociodemographic,
and virus exposure-related variables associated with anxiety and
perceived threat of death regarding COVID-19.
Method: We recruited 908 adults from Eastern China for a cross-sectional
web survey, from 24 February to 15 March 2020, when social distancing
was heavily enforced in China. We used several machine learning
algorithms to train our statistical model of predictor variables in
modeling COVID-19-related anxiety, and perceived threat of death,
separately. We trained the model using many simulated replications on
a random subset of participants, and subsequently externally tested on
the remaining subset of participants.
Results: Shrinkage machine learning algorithms performed best,
indicating that stress and rumination were the most important variables
in modeling COVID-19-related anxiety severity. Health anxiety was the
most potent predictor of perceived threat of death from COVID-19.
Conclusions: Results are discussed in the context of research on anxiety
and fear from prior virus outbreaks, and from theory on outbreak-related
emotional vulnerability. Implications regarding COVID-19-related anxiety
are also discussed.
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Introduction

The COVID-19 pandemic (Li et al., 2020) introduced social distancing and home quarantine globally
(Xiang et al., 2020). Because of COVID-19, anxiety and fear has increased (e.g., Cao et al., 2020; Taylor
et al., 2020). Research from prior virus outbreaks has revealed psychopathology, sociodemographic,
and virus exposure-related variables influencing emotional distress including anxiety and fear.
However, the disease burden and ease of transmission renders COVID-19 substantially more
severe than previous outbreaks (Li et al., 2020). We selected numerous vulnerability-related
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psychopathology, sociodemographic, and exposure variables from prior virus outbreak literature,
using machine learning to model their influence on anxiety and fear within the context of COVID-19.

Research from prior virus outbreaks has examined psychopathology variables associated with
increased anxiety and fear. Taylor (2019) reviewed these findings, with college students, first respon-
ders, and participants recruited online, involving SARS, Avian and Swine flu, Zika, and Ebola out-
breaks. Increased anxiety and fear from an outbreak was positively associated with negative
affectivity variables, including greater neuroticism (e.g., Lu et al., 2006; Smith et al., 2009), trait
anxiety (Cheng & Cheung, 2005; Wheaton et al., 2011), stress (Wheaton et al., 2011), intolerance of
uncertainty (Taha et al., 2014), contamination fears (Blakey & Abramowitz, 2017; Blakey et al.,
2015; Wheaton et al., 2011), and disgust sensitivity (Blakey & Abramowitz, 2017; Blakey et al.,
2015; Wheaton et al., 2011). Outbreak-related anxiety was also positively associated with somatic
concern, including body vigilance, health anxiety, and anxiety sensitivity from physiological
changes (Blakey & Abramowitz, 2017; Blakey et al., 2015; Wheaton et al., 2011).

In addition to psychopathology, other variables associated with outbreak-related anxiety and fear
include receiving inadequate (Xie et al., 2011) or excessive (Hansen, 2009) virus news exposure. Fur-
thermore, perceived adverse threat from a virus correlated with greater anxiety (Taha et al., 2014; Xie
et al., 2011) and younger age and female sex were risk factors for negative emotion (Smith et al.,
2009). Asmundson and Taylor (2020a, 2020b) recently discussed this research and its applicability
to COVID-19. Unique to COVID-19 is that many people needed to reside away from their homes
because of travel restrictions implemented to limit spread (Wilder-Smith et al., 2020), which can
increase distress.

Several published studies have reported emotional reactions to COVID-19, mostly sampling
Chinese participants. The virus started in China and the Chinese population was the earliest
affected (Li et al., 2020). Chinese studies conducted in late-January to early February 2020 examined
emotional distress based on general depression, anxiety, and stress scale symptoms, but not specifi-
cally anchored to COVID-19. These studies demonstrate increased depression, anxiety and stress
related to female sex, age range in the 20s or 30s, increased social media exposure, lower social
capital, knowing someone with COVID-19, and worse physical health (Cao et al., 2020; Gao et al.,
2020; Wang et al., 2020, 2021; Xiao et al., 2020).

Other studies examined COVID-19-specific fear and anxiety, such as a Chinese study finding
COVID-19 anxiety severity related to non-middle-age groups (Zhang & Ma, 2020) and an Iranian
study showing COVID-19-specific anxiety related to depression, anxiety severity, and perceived vul-
nerability to disease (Ahorsu et al., in press). Additionally, American studies found COVID-19 anxiety
levels related to mental health constructs including alcohol use, hopelessness, and suicidal ideation
(Lee, 2020). And Taylor et al. (2020) have identified evidence of a COVID Stress Syndrome in large
population-representative samples from Canada and the United States, encompassing anxiety and
stress about COVID-19 regarding danger and contamination, socioeconomic consequences, xeno-
phobia, traumatic stress, and compulsive checking. Other studies also found similar correlates
with COVID-19 anxiety (e.g., Asmundson et al., 2020; Jungmann & Witthöft, 2020).

Theory

Taylor (2019) noted the absence of theoretical frameworks explaining emotional reactions to pan-
demics; as such, he summarized other related frameworks that may serve as pieces of the puzzle
to explain outbreak-related emotional vulnerability, including personality traits, cognitive-behavioral
models of health anxiety, the behavioral immune system, and social psychological factors involving
attitudes, fear, and risk communication. Recently, Schimmenti and colleagues (2020) developed a
theoretical framework to understand the nature of fear and anxiety from COVID-19. They proposed
a model with four components, including (1) body-related fear, involving hypervigilance of changes
in physiological symptoms, (2) fear related to significant others and interpersonal relationships,
involving worry about transmitting disease and decreased contact from social distancing, (3)
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uncertainty, in balancing learning about the pandemic versus avoidant coping, and (4) fear regard-
ing action and inaction, involving apprehension of both offering help to those affected and not
offering assistance. Interestingly, fears discussed in this model involve the emotional aspect of
anxiety and the cognitive and behavioral aspects (Schimmenti et al., 2020).

Aims

We explored vulnerability factors related to COVID-19-related anxiety using machine learning – an
innovation over prior relevant work. We included two separate dependent variables: (a) anxiety
symptoms rated specifically within the context of COVID-19, and (b) perceived threat of death
from COVID-19. We incorporated numerous psychopathology, sociodemographic, and virus
exposure predictor variables, drawn from literature on outbreak-related emotional vulnerability dis-
cussed above. Our aim was to empirically identify the subset of predictor variables most robustly
associated with COVID-19-related anxiety.

We used supervised machine learning (Hastie et al., 2016; Kuhn & Johnson, 2013) to model vul-
nerability factors of outbreak-related anxiety and fear, for several reasons. First, this approach
allowed sample separation into training and testing subsets, conducting analyses in the training
subset to detect patterns and train our statistical model, which was subsequently applied to the
testing subset. The distinction between training and testing has enabled machine learning to out-
perform traditional data analyses (Jordan & Mitchell, 2015). Second, we used specific machine learn-
ing algorithms (described below) that alleviate limitations from traditional statistical analyses, such
as predictor collinearity, statistical overfitting, and linearity. Machine learning has been used to
model mental health variables, including anxiety symptoms (reviewed in Shatte et al., 2019).

Our analytic approach was exploratory, given limited literature on vulnerability factors for COVID-
19-specific anxiety. These vulnerability factors could be quite different than those from prior out-
breaks given the substantially greater severity and transmission of COVID-19 (Li et al., 2020).
Additionally, machine learning is an inherently exploratory analytic procedure (Jordan & Mitchell,
2015). Nonetheless, we infused theory into machine learning analyses by selecting predictor vari-
ables from prior theory and relevant empirical work (Elhai & Montag, 2020).

Method

We conducted a cross-sectional web survey of Chinese adults from 24 February to 15 March 2020,
when social distancing was heavily enforced in China. Data collection was thus conducted quite
early in course of the pandemic, with little information known about the transmission of COVID-
19 or optimal protection methods. We invited participants through the Chinese social networking
site app “WeChat” (Montag et al., 2018), which includes location-based online communities. We
arranged for WeChat community moderators in Tianjin, China (a large city of 12 million people)
to invite participants. We presented an online consent statement to interested participants, and
for those enrolling we presented the survey in Chinese hosted on Survey Star, a web survey platform
with features to minimize bot participation. We compensated participants for survey completion
with digital payments, randomly ranging from 3 to 10 Chinese RMB (about 50 cents-$1.50 USD).
The Tianjin Normal University Psychology Ethics Committee approved the project.

There were no missing data, as participants were prompted to complete skipped items. After
removing participants with large numbers of consecutive identical responses, our effective
sample included 908 participants. Age averaged 40.37 years (SD = 9.27), ranging from 17 to 64
years. Most participants were women (n = 752, 82.82%), and most were of Chinese Han ethnicity
(n = 875, 96.37%). A slight majority reported fear of death from COVID-19 (n = 582, 64.10%). A min-
ority reported having to stay in a different city because of virus-related travel restrictions (n = 203,
22.36%).
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Instruments

We queried demographic characteristics, including age and sex, and administered the following self-
report measures. Internal consistency for multi-item measures is displayed in Table 1.

The Depression Anxiety Stress Scale-21 (DASS-21) has 7-item depression, anxiety, and stress sub-
scales (Zanon et al., in press), validated in Chinese (Wang et al., 2016); we assessed symptoms
using the instrument’s standard past-week instructions, but without specific reference to the
COVID-19 pandemic. The Ruminative Responses Scale has 22 items measuring ruminative thought
using a total score (Treynor et al., 2003), validated in Chinese (Han & Yang, 2009). The Anxiety Sen-
sitivity Index-3 has 18 items representing fear of anxiety sensations using a total score (Taylor
et al., 2007) supported in Chinese (Wang et al., 2014). The Generalized Anxiety Disorder Scale-7
(GAD-7) is a 7-item measure of anxiety and worry (mapping onto DSM-5 GAD symptom criteria),
forming a total score (Plummer et al., 2016), validated in Chinese (He et al., 2010). We modified
the GAD-7 instructions to specifically rate symptoms within the context of COVID-19 (C-GAD-7), to
minimize pre-existing symptoms assessed (e.g., “Based on your own feelings since the outbreak of
the novel coronavirus, how often have you been bothered by… Not being able to stop or control
worrying?”).

We also administered instruments not previously validated in Chinese. We used a rigorous
process of translation/back translation by bilingual Chinese/English speakers to adapt English
measures in Chinese, resolving discrepancies before finalizing them.1 The Disgust Propensity and Sen-
sitivity Scale-Revised has 8-item disgust propensity and sensitivity subscale scores, validated pre-
viously (van Overveld et al., 2010). The Penn State Worry Questionnaire has 16 items summed for a

Table 1. Internal consistency alpha values; and means and standard deviations for primary continuous variables separated by
perceived threat of death from COVID-19.

Variable Coefficient alpha

Did not fear death
(n = 326)

M
(SD)

Feared death
(n = 582)

M
(SD) F(1, 906) p h2

p

Depression .82 2.42
(2.91)

2.96
(3.29)

6.18 .01 .007

DASS-21 anxiety .76 3.38
(2.85)

4.24
(3.36)

15.27 <.001 .017

Stress .80 4.26
(3.41)

5.20
(3.79)

13.66 <.001 .015

COVID-19-related anxiety .90 3.46
(3.48)

4.80
(4.00)

25.87 <.001 .028

Rumination .94 34.02
(9.23)

36.31
(10.42)

10.88 .001 .012

Anxiety sensitivity .95 11.56
(11.21)

15.79
(13.70)

22.55 <.001 .024

Disgust propensity .84 15.54
(4.99)

17.03
(5.66)

15.68 <.001 .017

Disgust sensitivity .88 12.53
(4.74)

14.19
(5.71)

19.93 <.001 .022

Worry .89 39.80
(10.05)

43.13
(11.47)

19.26 <.001 .021

Social anxiety .90 15.60
(11.22)

18.10
(12.25)

9.26 .002 .010

Health anxiety .86 10.47
(4.76)

13.32
(5.64)

59.30 <.001 .061

Negative consequences of illness .75 2.34
(1.79)

3.25
(2.36)

36.84 <.001 .039

Age N/A 41.00
(9.48)

40.01
(9.13)

2.37 .12 .003

COVID-19 news exposure N/A 2.69
(.68)

2.72
(.65)

.63 .43 .001

Note. DASS-21 = Depression Anxiety Stress Scale-21; Threat of death was coded “1” for “yes,” and 0 for “no.”
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total score, validated by Kertz et al. (2014). The Social Interaction Anxiety Scale is a 20-itemmeasure of
social anxiety and we used the 17 non-reverse-coded items to form a total score (Rodebaugh et al.,
2007). The Short Health Anxiety Inventory has validated 14-item health anxiety and 4-item negative
consequences of illness subscales (Alberts et al., 2013). Thus, only the C-GAD-7 Scale included
instructions for rating items specifically within the context of COVID-19; all other scales used stan-
dard instructions.

We queried extent of COVID-19-related news exposure, asking “How much have you heard or
learned about coronavirus in the news? (By news we mean national, international, regional/local
news and other topical events accessed via radio, TV, newspaper or online)?” We used the news
definition by Newman and Levy (2014), with a Likert scale from “0 = Not at all” to “4 = Quite a lot.”
We also inquired “Have you had to stay in a different city, because of the coronavirus?” using a
Yes/No response format. Finally, we asked “Have you feared that you may die from the coronavirus?”
using a Yes/No response format, adapted Norris et al. (2006).

Analysis

We used R version 3.6.3 (R Core Team, 2020) for data pre-processing and preliminary analysis with R
packages of careless (detecting careless responding), fmsb (coefficient alphas), pastecs (descriptives),
sjstats (ANOVA effects) and corrplot (bivariate correlations). We used the R caret package for machine
learning, with packages for specific algorithms of glmnet (lasso, ridge and elastic net regression), rf
(random forest), xgbTree (extreme gradient boosted regression), and svmRadial (support vector
machine with a radial basis function kernel).

Predictor variables included sex, age, COVID-19 news exposure, staying in a different city, and
summed scores for depression, DASS-21 anxiety, stress, rumination, anxiety sensitivity, disgust pro-
pensity, disgust sensitivity, worry, social interaction anxiety, health anxiety, and negative conse-
quences of illness. When modeling COVID-19-relevant anxiety (C-GAD-7) as the dependent
variable (a summed total score), we added perceived threat of death as a predictor. When modeling
perceived threat of death due to COVID-19 as the dependent variable (a binary “yes”/“no” item), we
added COVID-19-relevant anxiety as a predictor. Variable distributions were normal; kurtosis was
highest for DASS-21 anxiety (3.22), and skewness was highest for depression (1.66).

Statistical tests were two-tailed. Correlations among continuous variables are displayed in Table 2.
Group differences on continuous variables between those endorsing versus not endorsing perceived
threat of death from COVID-19 are displayed in Table 1. We tested relations between categorical vari-
ables using chi-square analyses.

We randomly shuffled the 908 data rows, using a fixed number seed for subsequent replication.
We randomly allocated 70% (in detail: 70.04%) of the sample (n = 636) as the training subset, and
30% (in detail: 29.96%, n = 272) as the “hold-out” test subset. For analyses using threat of death in
relation to COVID-19 as the binary dependent variable, we stratified training/test allocation by the
dependent variable to ensure that we did not have too few participants in the (smaller) test
subset who did not endorse COVID-19-related threat of death. After subset allocation, we prepro-
cessed continuous predictor and dependent variables with z-score transformations (Kuhn &
Johnson, 2013).

We used a variety of machine learning algorithms to test our COVID-19-specific anxiety model and
perceived threat of COVID-19 death model. We included three “shrinkage” algorithms-elastic net,
lasso, and ridge regression-assigning a size constraint penalty to regression coefficients from
highly correlated predictor variables, alleviating collinearity problems. While ridge regression
shrinks coefficients toward zero, elastic net and lasso regression can additionally shrink empirically
unimportant predictors to exactly zero, conducting parsimonious model subset selection (Zou &
Hastie, 2005). Because of the advantage of parsimony in model subset selection, especially with
models containing many predictor variables, lasso and elastic net algorithms are often preferred
to algorithms that do not offer subset selection (Hastie et al., 2016).
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Table 2. Bivariate Pearson correlations among continuous variables.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

1. Depression
2. Anxiety .68**
3. Stress .75** .76**
4. C-Anx .59** .64** .70**
5. Age −.06 −.05 −.04 −.01
6. C-News −.01 −.01 .01 .02 .11**
7. Rumination .62** .57** .65** .64** −.06 .02
8. AS .46** .58** .52** .55** −.03 .03 .68**
9. Disgust P .48** .49** .52** .52** .02 −.02 .64** .67**
10. Disgust S .39** .49** .47** .52** .06 .01 .60** .74** .78**
11. Worry .46** .52** .56** .58** −.08* .02 .58** .61** .51** .49**
12. Soc Anx .41** .44** .44** .40** −.15** −.06 .53** .57** .50** .46** .58**
13. Health Anx .29** .36** .33** .39** −.04 .02 .39** .43** .39** .37** .43** .29**
14. Neg Conseq .36** .33** .35** .36** −.05 .03 .36** .39** .33** .31** .45** .35** .52**

Note. Anxiety = Depression Anxiety Stress Scale-21 (DASS-21) Anxiety; Health Anx = Health Anxiety; Neg Conseq = Negative Consequences of Illness; C-Anx = COVID-19-related anxiety; Disgust P =
Disgust Propensity; Disgust S = Disgust Sensitivity; AS = Anxiety Sensitivity; Soc Anx = Social Anxiety; C-News = COVID-19-related news exposure.

* indicates p < .05. ** indicates p < .01.
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We also used a support vector machine algorithm that maps relationships in three dimensions to
improve linear separability in a dependent variable. We implemented a radial basis function kernel
for the support vector machine, allowing for non-linear relations, and producing flexible decision
boundaries in the dependent variable. We also tested two ensemble algorithms – random forest
and extreme gradient boosted regression – both conducting subset selection. In these ensemble
algorithms, weaker learners (many subsets of participants and/or predictors) are iteratively tested
to form a final model, reducing overfitting and variance through weaker learner results aggregation.
Random forest conducts iterative aggregation independently, while boosted regression uses prior
iterations to prospectively fix learner errors. For all algorithms, we used grid search to automatically
hypertune optimal parameters (e.g., alpha and lambda for the shrinkage algorithms). We chose these
algorithms because across research areas, they are among the best, most accurate machine learning
algorithms, with their advantages (and little disadvantage) over traditional statistics extensively dis-
cussed (Hastie et al., 2016; Kuhn & Johnson, 2013). We compared the performance of these algor-
ithms using our data, because different research areas can yield different optimal performing
machine learning algorithms (Fernández-Delgado et al., 2015). In modeling COVID-19-related
anxiety and threat of death, no available literature can help determine a priori which algorithm
would perform best, but our results could inform future studies on virus outbreak-related emotional
distress regarding which algorithms to ideally select.

For modeling COVID-19-related anxiety as a continuous dependent variable (regression-based
machine learning), we compared algorithm performance using mean absolute error (MAE), root
mean squared error (RMSE), R-squared values, and Bonferroni-adjusted pairwise statistical tests. For
modeling COVID-19-related threat of death as a binary dependent variable (classification-based
machine learning), we compared algorithms using area under the curve, accuracy, sensitivity, specifi-
city, and Bonferroni-adjusted pairwise statistical tests. For each algorithm separately, we first used k-
folds repeated cross-validation in the training subset to simulate test data, using a fixed number
seed (Kuhn & Johnson, 2013). We split the training subset into 5 orthogonal subsamples/folds,
using four folds as simulated training data and the fifth fold as simulated test data. We repeated
this procedure so each fold served as the simulated test fold once, repeating the entire process
nine more times, for a total of 50 replications. After simulation testing, we applied the aggregated,
trained predictor model to the external hold-out test sample, for each algorithm separately to validate
external performance. We computed variable importance metrics for the best performing algorithms.

Results

Preliminary analyses

Table 2 displays bivariate Pearson correlations among continuous variables. COVID-19-relevant
anxiety significantly correlated with all variables (even with a Bonferroni-adjusted p value of .004),
except age and COVID-19 news exposure. ANOVA demonstrated that COVID-19-specific anxiety
was not associated with sex, F(1, 906) = 2.40, p = .12, η2 = .003. Descriptive statistics for continuous
variables are displayed in Table 1, in association with perceived threat of death from COVID-19.
Table 1 demonstrates that perceived threat of death was associated with all continuous variables
except age and COVID-19 news exposure. Perceived threat of death was positively associated
with staying in a different city, χ2(1, N = 908) = 5.31, p = .02, phi = .08, but not with sex, χ2(1, N =
908) = .54, p = .46, phi = .02.

Modeling COVID-19-related anxiety

Table 3 presents machine learning results for modeling COVID-19-relevant anxiety as the dependent
variable. The table shows comparisons for the training subset using repeated cross-validations, and
performance results applied to the hold-out test sample. Lasso and elastic net algorithms performed
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best in the training sample. Bonferroni-adjusted tests for pairwise comparisons demonstrated that
the three shrinkage algorithms performed significantly better than other algorithms, but not
better than each other. Training sample results generalized well to the hold-out test sample,
especially observed for the shrinkage algorithms, without worsening of fit. In the hold-out test
sample, shrinkage algorithms performed best, but did not outperform each other. Shrinkage algor-
ithms individually explained between 58 and 59% of variance during training, and between approxi-
mately 57 and 58% variance during testing, in modeling COVID-19-relevant anxiety. Therefore,
results suggest that (especially using shrinkage algorithms) the model of predictors was successfully
trained and subsequently applied and validated in the hold-out test sample in modeling COVID-19-
related anxiety severity.

We estimated relative variable importance for predictor variables in modeling COVID-19-related
anxiety. These estimates are interpreted as standardized regression coefficients, as variables were z-

Table 3. Comparison of six machine learning-based algorithms, reported separately for the training sample using repeated cross-
validation, and the external hold-out test sample.

Modeling COVID-19-related anxiety severity as the dependent variable

Mean (and Standard Deviation)
Model fit findings over repeated
cross-validations in the training

sample Model fit findings in the test sample

RMSE
(SD)

MAE
(SD)

R2

(SD) RMSE MAE R2

Lasso .6468
(.0505)

.4917
(.0330)

.5868
(.0775)

.6538 .4902 .5752

Ridge .6489
(.0508)

.4930
(.0334)

.5831
(.0754)

.6531 .4912 .5756

Elastic Net .6468
(.0504)

.4916
(.0330)

.5872
(.0775)

.6535 .4903 .5670

Support vector machine .7004
(.0546)

.5185
(.0316)

.5216
(.0555)

.7503 .5442 .4547

Extreme gradient boosting .6796
(.0542)

.5169
(.0366)

.5482
(.0747)

.6966 .5317 .5183

Random forest .6622
(.0492)

.5047
(.0328)

.5719
(.0723)

.6835 .5103 .5430

Modeling perceived threat of death from COVID-19 (yes/no) as the dependent variable
Mean (and standard deviation) classification

accuracy findings over repeated cross-validations
in the training sample Model fit findings in the test sample

Accuracy
AUC
(SD)

Specificity
(SD)

Sensitivity
(SD)

Accuracy
(95% CI) Specificity Sensitivity

Lasso .6499 .6524
(.0413)

.0000
(.0000)

1.0000
(.0000)

.6531
(.5932–.7097)

.1031 .9598

Ridge .6427 .6364
(.0403)

.0835
(.0376)

.9490
(.0312)

.6458
(.5856–.7027)

.0103 1.0000

Elastic Net .6493 .6526
(.0416)

.0000
(.0000)

1.0000
(.0000)

.6568
(.5970–.7132)

.0928 .9713

Support vector machine .6386 .5986
(.0357)

.0652
(.0715)

.9554
(.0443)

.6421
(.5818–.6992)

.0309 .9828

Extreme gradient boosting .6322 .6084
(.0431)

.2175
(.0510)

.8598
(.0496)

.6421
(.5818–.6992)

.2784 .8448

Random forest .6369 .6006
(.0446)

.2245
(.0573)

.8684
(.0426)

.6273
(.5668–.6850)

.1649 .8851

Note. Higher values for R2, but lower values for RMSE and MAE, indicate better fit. RMSE = root mean squared error; MAE = mean
absolute error; AUC = Area under the curve.
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transformed.2 For example, using elastic net regression, Table 4 demonstrates stress (importance
= .32) and rumination (importance = .21) as the most important predictors of COVID-19-relevant
anxiety; these predictors were followed next by somewhat less important predictors of DASS-21
anxiety, health anxiety, and worry, with each importance value roughly only .10 or lower. As
elastic net regression shrinks empirically unimportant regression coefficients to zero, the bottom
eight predictors (see Table 4) were excluded from the final model as they were empirically unimpor-
tant in the model. Furthermore, stress and rumination (in that order) were the top performing pre-
dictors across all other algorithms, and in fact rankings of variable importance were quite similar
across algorithms. Thus stress and rumination appeared most robust in association with COVID-
19-relevant anxiety severity.

One issue with the machine learning analyses is that anxiety was used as a predictor variable
(DASS-21 anxiety) and also as the dependent variable (C-GAD-7). As discussed above, a major differ-
ence between these two measures was that unlike DASS-21 anxiety, the C-GAD-7 assessment was
specifically anchored within the context of COVID-19. Nonetheless, we re-computed the machine
learning analyses by excluding DASS-21 anxiety as a predictor variable. We found extremely
similar results for the machine learning algorithms to those reported in Table 3 which included
DASS-21 anxiety as a predictor. And using elastic net regression as we presented in Table 4 that
included DASS-21 anxiety, when now excluding DASS-21 anxiety we found the same ordered
ranking of remaining predictors based on variable importance estimates, almost exactly the same
magnitude of estimates, and the same set of variables excluded based on subset selection (for
empirical unimportance). These revised results are available by contacting the second author.

Modeling perceived threat of death from COVID-19

Table 5 also presents machine learning results modeling perceived threat of death as the (binary)
dependent variable. The table displays comparisons for the training subset using repeated cross-vali-
dations, and results applied to the hold-out test sample. Algorithms performed better in training
(and testing) by ruling in individuals fearing death from COVID-19 (sensitivity) than ruling out indi-
viduals (specificity). Thus the model was best at correctly identifying participants reporting fear of
death, but often identified participants without fear of death erroneously as fearing death. In train-
ing, area under the curve and accuracy values were best for lasso and elastic net regression, with
Bonferroni-adjusted tests demonstrating superiority over other algorithms, but no superiority over
one another. In testing, elastic net and lasso regression also yielded the best accuracy values.

Table 4. Relative variable importance for the predictor variables in modeling COVID-19-related
anxiety severity, using elastic net regression.

Predictor variable Importance estimate

Stress .3247
Rumination .2119
DASS-21 anxiety .1051
Health anxiety .0879
Worry .0795
Disgust sensitivity .0684
Depression .0243
Threat of death from COVID-19 .0119
Age 0
Anxiety sensitivity 0
Disgust propensity 0
Negative consequences of illness 0
News exposure to coronavirus 0
Sex 0
Social anxiety 0
Stayed in a different city 0

Note. DASS-21 = Depression Anxiety Stress Scale.
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However, the best compromise between sensitivity and specificity was achieved by extreme gradi-
ent boosted regression.

We estimated relative variable importance for predictor variables in modeling perceived threat of
death from COVID-19. For example, using elastic net regression, the only relative important predictor
of perceived threat of death was health anxiety. All other predictors were excluded using subset
selection because they were empirically unimportant to the model (contact the corresponding
author for these full results). For comparison purposes using gradient boosted regression (with
subset selection; Table 5), health anxiety was also the most important relative predictor; however,
11 additional variables were significant but only mildly important predictors, and the four bottom
variables were excluded from the final model. Nonetheless, health anxiety was the most important
relative predictor of perceived threat of death across all machine learning algorithms, and variable
importance rankings across algorithms were quite similar.

Discussion

In the present paper, we examined numerous relevant psychopathology, sociodemographic, and
virus exposure-related variables associated with anxiety regarding COVID-19. Bivariate analyses
demonstrated that COVID-19-related anxiety levels and perceived threat of death individually corre-
lated with nearly all variables tested. We subsequently used machine learning to empirically identify
the most important predictor variables from among more than a dozen tested. We found most
support for shrinkage machine learning algorithms, generalizing from model training to testing in
an external sample. The shrinkage algorithms performed quite similarly to each other, with only
mild performance differences between them. Generalization of performance from training to
testing suggests that the predictor model was successfully trained and subsequently validated in
modeling COVID-19-related anxiety levels. Results remained the same when excluding DASS-21
anxiety as a predictor of COVID-19-related anxiety, suggesting that DASS-21 anxiety was not a
strong driver of the results.

Stress and rumination were the most potent relative contributors to COVID-19-related anxiety
across machine learning algorithms; and these findings (and magnitude of effects) were replicated
when we removed DASS-21 anxiety as a predictor variable. These findings are consistent with evi-
dence that stress bivariately correlated with virus-related anxiety during the Swine flu pandemic,
but not in adjusted multivariate models (Wheaton et al., 2011). Rumination has not been examined
in relation to outbreak-related anxiety. However, rumination largely involves negative affectivity

Table 5. Relative variable importance for the predictor variables in modeling perceived threat of
death from COVID-19, using extreme gradient boosted regression.

Predictor variable Importance estimate

Health anxiety .3732
Negative consequences of illness .1273
Disgust sensitivity .1010
Anxiety sensitivity .0919
Stress .0848
Rumination .0499
COVID-19-related anxiety .0481
Worry .0429
News exposure to coronavirus .0274
Disgust propensity .0235
Social anxiety .0188
Stayed in a different city .0111
Age 0
DASS-21 anxiety 0
Depression 0
Sex 0

Note. DASS-21 = Depression Anxiety Stress Scales.
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(Samtani & Moulds, 2017), and other negative affectivity variables are supported in relation to out-
break-related emotional distress (Ahorsu et al., in press; Blakey & Abramowitz, 2017; Blakey et al.,
2015; Cheng & Cheung, 2005; Lee, 2020; Wheaton et al., 2011). Stress and rumination can result
from social distancing requirements, including stress from decreased contact with significant
others, or rumination about virus-related information (Schimmenti et al., 2020). Additionally, we
found other anxiety-related variables (e.g., general anxiety, health anxiety, and worry) as the next
most important variables in predicting COVID-19-relevant anxiety, but their adjusted effects were
mild in contrast to stress and rumination. These anxiety-related variables were previously related
to outbreak-related anxiety (Ahorsu et al., in press; Blakey & Abramowitz, 2017; Blakey et al., 2015;
Cheng & Cheung, 2005; Wheaton et al., 2011). Thus people reporting greater levels of anxiety-
related psychopathology, including general and health anxiety, but especially stress and repetitive
negative thinking such as rumination, also reported greater COVID-19-relevant anxiety. These
anxiety-related negative affectivity variables may therefore be vulnerability factors to virus out-
break-related anxiety (Taylor, 2019).

Machine learning results identified health anxiety as the most important relative contributor to
perceived threat of death from COVID-19. Health anxiety was bivariately associated with Swine flu
and Zika outbreak anxiety previously (Blakey & Abramowitz, 2017; Wheaton et al., 2011), but not
in multivariate models (Wheaton et al., 2011). Similarly, Ahorsu and colleagues (Ahorsu et al., in
press) found that perceived vulnerability to disease was related to COVID-19 anxiety. Health
anxiety fits within the Schimmenti et al. (2020) conceptual framework as a major COVID-19 fear;
that is, body-related fears and hypersensitivity to physiological sensations, and is consistent with
theoretical perspectives previously discussed (Asmundson & Taylor, 2020b; Taylor, 2019). The next
most important predictors of perceived threat of death found in extreme gradient boosted
regression also involved health anxiety, specifically regarding negative consequences from illness
and disgust sensitivity, though with mild effects. Nonetheless, disgust sensitivity is supported in
relation to outbreak-related anxiety (Blakey & Abramowitz, 2017; Blakey et al., 2015; Wheaton
et al., 2011). Not everyone during a major virus outbreak will fear death from the virus. Anxiety
about one’s health may be an important vulnerability factor that explains why some people have
heightened virus-related anxiety while others do not (Taylor, 2019).

Limitations

Our participants were limited to one country, China, in the early stages of the pandemic when little
was known about the virus in terms of transmission mode or optimal protection methods. We cannot
conclude how well results generalize to other countries, given differences in COVID-19 prevalence
and local orders regarding social distancing and quarantine. COVID-19 anxiety in China may be
less severe currently, as more information is now known about the virus and how to protect
oneself from exposure to it. Additionally, we only included self-report measures of psychopathology.
Because of required social distancing, we could not interview participants using structured inter-
views. Some of our measures share conceptual similarities, such as between the C-GAD-7 and
DASS-21’s Stress subscale, and perhaps between the health anxiety subscales and fear of death
from COVID-19 item. Furthermore, the DASS-21 anxiety subscale and C-GAD-7 both inquire about
anxiety from the time of the pandemic. Though as stated above, unlike the stress and health
anxiety variables, we instructed participants to rate the C-GAD-7 specifically within the context of
COVID-19 rather than reflecting pre-existing symptoms, and removing the DASS-21 anxiety subscale
from analyses yielded essentially the same results. Furthermore, we were unable to measure all con-
structs that we reviewed from prior literature as vulnerability factors of virus outbreak-related
anxiety. This study also used a cross-sectional design; therefore, causal conclusions between back-
ground psychopathology as predictor variables and COVID-19-related anxiety cannot be inferred;
nonetheless, we attempted to minimize this limitation by anchoring dependent variable symptom
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ratings specifically within the context of COVID-19. Future work following participants over time
using a longitudinal research design would allow more confidence in drawing causal conclusions.

Conclusion

Despite limitations, our results provide initial insight into the most robust emotional vulnerabilities
to COVID-19-related anxiety and fear of death-stress, rumination, general anxiety, health anxiety, and
worry for the former, and health anxiety alone for the latter. As earlier studies outlined the impor-
tance of studying personality traits in highly uncertain situations, such as the anxiety versus fear
debate (Reuter et al., 2015), future work should examine stable individual differences like the Big
Five personality traits or measures linked to Reinforcement Sensitivity Theory (Corr & McNaughton,
2012). Such individual differences could also be emotional vulnerability factors to COVID-19-related
distress. Future work might also apply machine learning to examine the most robust predictors of
broader conceptualizations of COVID-19-related anxiety and fear, such as the Taylor et al. (2020)
COVID Stress Syndrome.

Notes

1. The second author can be contacted to obtain the Chinese translations: yanghaibo@tjnu.edu.cn.
2. In linear and logistic regression, standard errors are computed for regression coefficients, from which to calcu-

late statistical tests and resulting p values. However, standard errors are not computed for variable importance
estimates, using the algorithms we tested. This is because these algorithms purposefully introduce substantial
bias in order to reduce statistical overfitting and variance, and such bias is used to estimate the model’s mean
square error. Yet it is not possible to precisely or reliably measure such bias in a way that would translate to
standard error computation (Kuhn & Johnson, 2013).
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