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Abstract

Numerous psychological variables are associated with self-reported/estimated

smartphone use in college students. However, less is known about how additional

psychological variables involving academic study and productivity relate to

objectively-measured smartphone usage, such as procrastination, surface learning,

and academic productivity. We administered psychological surveys to 103 college

students from an American university and collected their objective smartphone use

data using the iPhone's Screentime feature. Levels of depression, anxiety, and stress

symptoms, as well as greater procrastination and surface learning, mildly-to-

moderately inversely correlated with the number of objectively-measured phone

pickups/screen-unlocks. Academic productivity moderately inversely correlated with

objectively-measured smartphone use minutes. Unemployed students had more

pickups and received more notifications. Results are discussed in the context of the-

ory on pathways to excessive internet use, and the threaded cognition model of cog-

nitive task interference.
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1 | INTRODUCTION

A substantial body of work has studied individual psychological differ-

ences associated with greater levels of self-reported/estimated and

objectively-measured smartphone use in college students, such as

depression, anxiety and stress levels. However, less is known about

additional psychological variables associated with increased

smartphone use—especially variables involving academic-related

study and productivity. We present objective and estimated

smartphone use data in association with such traditionally and lesser

studied psychological constructs in this article.

The benefits of smartphone use likely follow an inverse U-shaped

curve, where milder levels offer more benefits over non-use, but

excessive levels have adverse effects (Montag & Walla, 2016). “Prob-
lematic smartphone use” (PSU) involves excessive levels of use in

addition to functionally impairing symptoms observed in substance

use disorders (e.g., withdrawal when unable to use one's phone, reck-

less use when driving), accompanied by impairments in work, school

or social functioning (Billieux, Maurage, Lopez-Fernandez, Kuss, &

Griffiths, 2015; De-Sola Gutierrez, Rodriguez de Fonseca, &

Rubio, 2016). PSU severity has been found higher in women and

younger individuals (Busch & McCarthy, 2020).

One line of research has investigated psychological variables

associated with self-reported/estimated smartphone use frequency

and PSU severity. Depression severity demonstrates moderate posi-

tive associations (Elhai, Dvorak, Levine, & Hall, 2017), while anxiety
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and stress severity show small-to-moderate positive relationships

with PSU severity (Elhai, Levine et al., 2019; Vahedi & Saiphoo, 2018).

Also note that milder associations are found between self-reported/

estimated smartphone use frequency with depression/anxiety/stress

symptoms (Elhai et al., 2017; Vahedi & Saiphoo, 2018).

Another line of research has investigated psychological variables

associated with objectively-measured smartphone use frequency,

reviewed by Ryding and Kuss (2020). Objective use in this work has been

measured mostly with third party smartphone apps, and also built-in OS

features. Smartphone useminutes and pickupsmoderately inversely corre-

late with depression and anxiety severity (Elhai, Tiamiyu, et al., 2018;

Rozgonjuk, Levine, et al., 2018). Beyond this, Prasad et al. (2018) revealed

that use frequency correlates with higher perceived stress, external locus

of control, and lower conscientiousness, with small-to-mediumeffects.

Thus, when estimated by self-report, smartphone use and PSU

severity positively relate to depression, anxiety and stress symptoms

in several studies (Elhai et al., 2017; Elhai, Levine, et al., 2019;

Vahedi & Saiphoo, 2018). And, when measured objectively,

smartphone use inversely relates to depression and anxiety severity in

other studies (Elhai, Tiamiyu, et al., 2018; Rozgonjuk, Levine,

et al., 2018), though positively relates to stress (Prasad et al., 2018).

1.1 | Aims

Our aim was to assess objective and self-reported/estimated

smartphone use in conjunction with psychological variables and demo-

graphics previously examined, extending findings to additional, under-

studied psychological variables involving academic-related study and

productivity. We measured objective use with the iPhone's Screentime

feature, assessing use minutes, number of pickups and notifications.

1.2 | Theory

We present our study within context of the Interaction of Person-

Affect-Cognition-Execution (I-PACE) model of pathways to problem-

atic internet use (PIU) (Brand et al., 2019; Brand, Young, Laier,

Wolfling, & Potenza, 2016). I-PACE is a theoretical model conceptual-

izing a major set of such pathways to specific forms of PIU (including

PSU), involving background, predisposing influences such as biology,

childhood stressors, personality, and mental health. I-PACE also theo-

rizes a set of affective and cognitive response variables, influenced by

predisposing variables, and driving PIU, including coping, self/emo-

tional regulation styles, internet-related cognitive bias, and disinhibi-

tion. These pathways can lead to specific types of healthy, gratifying

internet use, or—when the Internet used is as a maladaptive coping

strategy to problems in everyday life—PIU. I-PACE addresses how a

variety of specific types of PIU arise, such as PSU, and problematic

gaming, social networking, and so on. (Brand et al., 2016). In fact, PSU

has been conceptualized as a mobile form of PIU (Montag, Wegmann,

Sariyska, Demetrovics, & Brand, 2020). Furthermore, I-PACE has been

supported in numerous studies specifically on PSU (Elhai, Yang,

Dempsey, et al., 2020; Elhai, Yang, Rozgonjuk, et al., 2020; Wol-

niewicz, Rozgonjuk, & Elhai, 2020).

We included depression, anxiety, and stress symptom severity as

predisposing variables within I-PACE—that is, background variables

influencing PSU. We also included affective/cognitive response vari-

ables, previously related to greater (albeit, self-reported) smartphone

use. Specifically, fear of missing out (FOMO) on rewarding experi-

ences is an internet-related cognitive bias (Elhai, Yang, et al., n.d.)

associated with increased smartphone and social media use (Elhai,

Yang, et al., 2019; Sha, Sariyska, Riedl, Lachmann, & Montag, 2019).

And FOMO is positively related to negative affectivity such as depres-

sion and anxiety severity (Elhai, Yang, et al., n.d.), and the personality

trait of neuroticism (Rozgonjuk, Sindermann, Elhai, & Montag, n.d.).

We additionally included variables related to academic study and

productivity, though previously understudied in relation to

objectively-measured smartphone use. Procrastination in task comple-

tion involves dysfunction in self-regulation (Steel, 2007), correlated

with PSU severity (Rozgonjuk, Kattago, et al., 2018). Additionally, sur-

face learning involves rote/superficial rather than comprehensive/

deep learning, focusing primarily on what is (presumably) needed to

pass one's exams rather than truly understanding the information.

Surface learning is driven by increased cognitive demands and atten-

tion to other tasks (Dolmans, Loyens, Marcq, & Gijbels, 2016). Thus,

deep (rather than surface) learning is found to positively correlate with

improved academic outcomes (Asikainen & Gijbels, 2017). Surface

learning is related to PSU severity (Rozgonjuk, Saal, et al., 2018).

Finally, we included self-reported academic productivity, associated

with increased smartphone use (Kushlev, Proulx, & Dunn, 2016).

These academic-related variables (surface learning, procrastina-

tion, and poor academic productivity) would be conceptualized as

negative consequences in daily life from increased smartphone use

within I-PACE (Brand et al., 2016). And these academic-related vari-

ables are associated with poor academic outcomes (Asikainen &

Gijbels, 2017; Kim & Seo, 2015), a known consequence of PSU

(Grant, Lust, & Chamberlain, 2019; Nayak, 2018) and PIU (Feng,

Wong, Wong, & Hossain, 2019). Furthermore, poor academic out-

comes are related to negative affect such as depression and anxiety

(DeRoma, Leach, & Leverett, 2009; Hysenbegasi, Hass, & Rowland,

2005; Owens, Stevenson, Hadwin, & Norgate, 2012).

1.3 | Hypotheses

We anticipated increased smartphone use and PSU severity to relate

to worse academic study and productivity variables (PSU's daily life

consequences in I-PACE), given prior associations for PSU severity

with poor academic outcomes (Grant et al., 2019; Nayak, 2018). We

expected depression and anxiety symptoms (I-PACE predisposing var-

iables) to positively correlate with self-reported PSU severity based

on prior theory (Brand et al., 2019), and empirical work (Elhai

et al., 2017; Elhai, Levine, et al., 2019; Vahedi & Saiphoo, 2018). Yet

based on prior research findings, we expected depression and anxiety

symptoms to inversely correlate with objectively-measured
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smartphone use (Elhai, Tiamiyu, et al., 2018; Rozgonjuk, Levine,

et al., 2018). We anticipated stress severity (an I-PACE predisposing

variable) to positively relate to objective smartphone use (Prasad

et al., 2018). We expected younger age and female sex to correlate

with increased smartphone use (Busch & McCarthy, 2020); we did not

have a priori hypotheses about racial or employment associations with

smartphone use because of limited prior relevant work.

2 | METHOD

2.1 | Participants

In Fall 2019, we recruited undergraduates from a large Midwestern

U.S. university psychology department's online research pool. After

presenting an online consent statement, those consenting were pres-

ented web-based survey measures below. We followed Declaration

of Helsinki research principles, with university institutional review

board approval.

Of 181 consenting participants, we excluded six for answering

few survey items, another 6 for participating twice, and another five

for carelessly, consecutively inputting the same response across

dozens of items, resulting in 164 participants. Among these partici-

pants, 148 participants reported owning an iPhone as their primary

phone (required for objective phone data), of which 103 (the effective

sample) agreed to and successfully provided phone data screenshots.

Among the effective sample, age averaged 19.28 years (SD = 2.46).

A slight majority were women (n = 69, 66.99%). Most identified as Cau-

casian (n = 82, 79.61%), with (non-mutually exclusive) minority represen-

tation from African Americans (n = 17, 16.50%), Latinx (n = 9, 8.74%),

and Asians (n = 3, 2.91%). Participants were mostly freshman (n = 56,

54.37%) or sophomores (n = 34, 33.01%). They primarily worked part-

time (n = 50, 48.54%) or were unemployed (n = 44, 42.72%).

2.2 | Procedure

First, we created identification numbers for participants by asking for

their last four cellphone number digits and birth-month

(e.g., 1500–10). Next, we presented web survey measures described

below. Finally, we instructed iPhone users to obtain past-week objec-

tive smartphone use data by locating these data in the Screentime

feature. We provided details for capturing screenshots of these data,

sent to us via email or text, along with identification numbers to

match Screentime and survey data. On average, participants sent their

screenshots 0.18 days (SD = 1.91) after web survey completion.

2.3 | Measures

We first queried demographic variables such as sex, age, and race.

Next, we presented our self-report measures. Sample internal consis-

tency estimates are in Table 1.

2.3.1 | Depression Anxiety Stress Scale-21
(DASS-21)

We administered this 21-item scale (Lovibond & Lovibond, 1995),

including depression, anxiety, and stress subscales. Likert-type

TABLE 1 Internal consistency, means, and standard deviations for the psychological scales and screentime variables, and differences across
sexes

Variable Alpha Sample M Sample SD Men (n = 34) M Men SD
Women
(n = 69) M Women SD F(1,101) p η2p

1. Depression .93 4.75 5.17 4.03 4.22 5.10 5.58 .97 .325 .010

2. Anxiety .86 4.59 4.44 3.35 3.62 5.20 4.70 4.06 .046 .039

3. Stress .89 6.53 5.15 5.15 4.47 7.22 5.36 3.775 .055 .036

4. FOMO .92 23.81 9.14 22.79 9.14 24.30 9.16 .62 .433 .006

5. Procrastination .82 25.89 5.78 25.12 5.70 26.28 5.82 .91 .342 .009

6. Surface .84 27.19 7.22 27.82 8.21 26.88 6.72 .38 .537 .004

7. Productivity .89 12.95 3.65 12.24 3.61 13.30 3.65 1.97 .163 .019

8. SUF .74 50.08 6.59 47.56 6.83 51.32 6.14 7.93 .006 .073

9. PSU .89 27.62 10.21 24.94 8.80 28.94 10.65 3.59 .061 .034

10. Minutes — 325.79 130.82 335.15 145.47 321.17 123.84 .26 .612 <.001

11. Pickups — 122.37 57.63 119.32 60.38 123.87 56.61 .14 .709 .001

12. Notifications — 172.53 118.11 166.71 123.81 175.41 116.01 .12 .727 .001

Note: The last three columns to the right indicate ANOVA F statistics (with degrees of freedom in parentheses), p values, and partial eta-squared values for

comparing men and women on each variable.

Abbreviations: FOMO, fear of missing out; Minutes, averaged daily minutes of smartphone use (objectively reported); Notifications, averaged daily number

of notifications (objectively measured); Pickups, averaged daily number of pickups (objectively measured); PSU, problematic smartphone use severity (self-

reported); SUF, smartphone use frequency (self-reported); Surface, surface learning.
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response options range from “0 = Did not apply to me at all” to

“3 = Applied to me very much, or most of the time.” Higher scores

indicate greater symptom severity levels. The subscales have been

widely validated (Zanon et al., n.d.).

2.3.2 | FOMO scale

The 10-item FOMO Scale (Przybylski, Murayama, DeHaan, &

Gladwell, 2013) measures FOMO on rewarding social experiences.

The scale has Likert-type responses from “1 = Not at all true of me”
to “5 = Extremely true of me.” Higher scores indicate greater FOMO

levels. The scale has adequate psychometrics (recently reviewed in

Elhai, Yang, et al., n.d.).

2.3.3 | Irrational Procrastination Scale (IPS)

We used this 9-item survey of procrastination with three reverse-

coded items (Steel, 2010). The IPS uses Likert-type responses from

“1 = Very seldom or not true of me” to “5 = Very often true, or true

of me.” Higher scores indicate greater procrastination levels. The IPS

has been previously validated (Svartdal et al., 2016).

2.3.4 | Study process questionnaire-revised

This 20-item scale (Biggs, Kember, & Leung, 2001) measures deep and

surface learning approaches. The measure uses Likert-type responses

from “1 = Never or rarely true of me” to “5 = Always or almost always

true of me.” We administered only the 10-item surface learning sub-

scale, with adequate validity (Martinelli & Raykov, 2017). Higher

scores indicate greater surface learning tendencies.

2.3.5 | Productivity

We used a three-item scale measuring school and work productivity

(Kushlev & Dunn, 2015), adapted for university students querying

only school-related items (Kushlev et al., 2016). The instrument uses

Likert-type options from “0 = Not at all” to “6 = Very much.” Higher

scores indicate greater academic productivity. Validity has been

established (Kushlev & Dunn, 2015).

2.3.6 | Smartphone Use Frequency Scale (SUF)

We used an 11-item self-report scale querying estimated frequency

of using common smartphone features, including voice/video calls,

text/instant messaging, email, social media use, website use, listening

entertainment, video watching, games, reading, and navigation (Elhai,

Levine, Dvorak, & Hall, 2016). The measure uses Likert-type

responses from “1 = Never” to “6 = Very often.” Higher scores

indicate more frequent (self-reported) smartphone use. The scale has

shown relations with other similar scales (Elhai, Levine, et al., 2018;

Elhai, Yang, Fang, et al., 2020).

2.3.7 | Smartphone addiction scale-short
version (SAS)

This 10-item self-report scale (Kwon, Kim, Cho, & Yang, 2013) mea-

sures smartphone-related daily life dysfunction (PSU). It uses Likert-

type responses from “1 = Strongly disagree” to “6 = Strongly agree.”
Higher scores indicate greater PSU severity. The SAS has been vali-

dated (Harris, McCredie, & Fields, 2020). We used an adapted version

voiced in the first-person (Duke & Montag, 2017).

2.3.8 | Screentime data

After survey administration, we collected objective use data from the

Screentime feature, first released in iOS 12. We included detailed

instructions for obtaining data regarding one's own iPhone rather than

other Apple devices on one's account, and only past-week (rather

than past-day) data. Instead of asking participants to obtain their data

and self-report them to us (which could involve error), we instructed

participants to objectively capture/send screenshots of these

Screentime data: (1) total use minutes, (2) minutes per use category

(e.g., social networking, information and reading), (3) number of

pickups, and (4) number of notifications received. For a given partici-

pant who did not provide screenshots on the day of participation, we

sent a reasonable number of reminders on subsequent days until

receiving them. However, the second screenshot (minutes per use

category) sent by many participants indicated use minutes per app or

website (Screentime's default) rather than modifying the display

(as instructed) for use categories, so we do not present data from this

variable. Prior to iOS 13, some data were reported by Apple in the

Screentime feature as weekly totals (categories of use, and notifica-

tions), while the remaining data were reported as daily averages; for

consistency, we converted week data into daily averages (by dividing

week totals by 7 days). iOS Screentime data have been used in recent

studies (David, Roberts, & Christenson, 2018; Ellis, Davidson, Shaw, &

Geyer, 2019; Gower & Moreno, 2018).

2.4 | Analysis

We used R software version 3.6.2 (R Core Team, 2020) for data pre-

processing and analysis. We used several R packages, including care-

less (for careless responding), mice (missing data treatment), fmsb

(coefficient alphas), pastecs (descriptives), corrplot (correlations), and

sjstats (ANOVA effects). We imputed missing item-level data using

maximum likelihood procedures (first reverse-coding IPS items) before

summing scale scores. No substantial skewness (>2) or kurtosis (>7)

were observed for continuous variables. We conducted bivariate
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Pearson correlations among psychological scale scores, age, and

Screentime variables. We statistically compared relevant pairs of cor-

relations using t-tests for dependent correlations. We used between-

group ANOVAs (with Type III sums of squares, robust to unequal cell

sizes) to assess relations for categorical demographic variables with

psychological scales and Screentime variables.

3 | RESULTS

Table 1 presents internal consistency and descriptive statistics for the

psychological scales, and associations with sex (discussed below).

Figure 1 displays Pearson correlations between scales and Screentime,

and associations with age. From Figure 1, self-reported/estimated

smartphone use frequency and PSU severity did not significantly cor-

relate with objective Screentime variables. Interestingly, among

Screentime variables, use minutes did not correlate with pickups or

notifications. However, pickups and notifications substantially

correlated.

Depression, anxiety and stress symptoms significantly positively

related to self-reported/estimated smartphone use and PSU severity

(Figure 1). Yet, these psychopathology variables inversely related to

objectively-measured smartphone pickups. Additionally, a similar pat-

tern emerged for procrastination and surface learning. Depression,

anxiety and stress did not differentially correlate with pickups, using

t-tests for dependent correlations: depression versus anxiety

t(100) = .30, p = .77; depression versus stress t(100) = .17, p = .87;

anxiety versus stress t(100) = .50, p = .62. Additionally, procrastination

and surface learning did not differentially correlate with pickups,

t(100) = .18, p = .86.

Productivity was the only variable correlated (inversely) with

objective use minutes (Figure 1). No psychological scales significantly

correlated with notifications. While FOMO positively correlated with

self-reported PSU severity, it did not correlate with objective

Screentime variables.

We assessed sex differences (Table 1), finding that women

reported significantly greater smartphone use frequency (and anxiety)

than men. We also assessed other demographic variables for relations

with Screentime (Table 2), finding that racial minorities had more

minutes used, while unemployed participants had more pickups and

notifications.

4 | DISCUSSION

We measured smartphone use with self-reported/estimated and

objective methods, correlating such use measurements with psycho-

logical and sociodemographic variables. We found novel relationships

between smartphone use and understudied psychological constructs

involving academic study and productivity.

One of our primary findings was that increased surface learning

and procrastination related to fewer smartphone pickups. This is a

novel finding not reported previously in the literature. Pickups can

be behavioral measures of organizational skills, attention to detail,

and task management productivity (Walter, Dunsmuir, & Westbrook,

2015). It is possible that students with poor academic organizational

skills, such as more surface learning and procrastination, also experi-

ence difficulty in keeping up with their notifications (including

university-related communication) as a result. Such findings can be

explained by the threaded cognition model, clarifying cognitive

resource limitations resulting from competing task activity and multi-

tasking (Salvucci & Taatgen, 2008), such as interacting with notifica-

tions while studying (Elhai, Rozgonjuk, et al., 2021; Rozgonjuk, Elhai,

Ryan, & Scott, 2019). In this model, receiving and interacting with

interruptive smartphone notifications may interfere with some stu-

dents' reading and schoolwork completion, making it impossible to

engage in greater levels of both pickups and comprehensive study-

ing. In fact, Ward, Duke, Gneezy, and Bos (2017) reported that the

mere presence of one's smartphone next to them reduced IQ and

working memory test performance. Yet relations between prolonged

use (e.g., more minutes/hours used) especially if intruding into work

or school time, and decreased productivity, may more likely suggest

poor time management and neglect of important daily activities from

prolonged use (Duke & Montag, 2017).

F IGURE 1 Bivariate Pearson correlations among age,
psychological scale scores, and screentime variables (N = 103).
Note: Correlation heatmap displays stronger absolute correlations in a
darker shade (blue for positive correlations, red for negative
correlations). For correlations between .20 and .25 in absolute size,
p <.05; for absolute correlations higher than .25, p <.01. Anx, anxiety;

Dep, depression; FOMO, fear of missing out; Minutes, averaged daily
minutes of smartphone use (objectively reported); Notif, averaged
daily number of notifications (objectively measured); Pickups,
averaged daily number of pickups (objectively measured); Procrast,
procrastination; Product, productivity; PSU, problematic smartphone
use severity (self-reported); SUF, smartphone use frequency
(self-reported); Surface, surface learning
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We also discovered sociodemographic associations with esti-

mated and objectively measured smartphone use. Women had greater

self-reported/estimated smartphone use than men, corroborating

prior work (Andone et al., 2016, September; Busch & McCarthy,

2020). We discovered that racial minorities had more minutes of use,

and unemployed participants had more notifications and pickups. We

could not find race or employment status related to objective

smartphone use in prior work, and thus these findings would require

replication in order to draw firm conclusions.

We should address the discrepancy in our findings between our

variables' relations with self-reported/estimated vs. objective

smartphone use. Psychopathology symptom relations with decreased

objective smartphone use (despite greater self-reported use) can be

explained in several ways. First, people experiencing greater negative

affectivity (e.g., depression/anxiety) self-report more adverse experi-

ences, and greater negativity across the board (Auerbach, Stanton,

Proudfit, & Pizzagalli, 2015; Morgado, Smith, Lecrubier, &

Widlöcher, 1991; Shestyuk & Deldin, 2010), including greater self-

reported phone use (Elhai et al., 2017; Elhai, Levine, et al., 2019;

Vahedi & Saiphoo, 2018). Yet, objective smartphone measurement

does not lie, and therefore can demonstrate opposite/inverse, proba-

bly more accurate findings. Second, people with greater negative

affectivity engage in less actual behavioral activity/socializing

(Dimidjian, Barrera Jr., Martell, Munoz, & Lewinsohn, 2011; Santini,

Koyanagi, Tyrovolas, Mason, & Haro, 2015), perhaps including social

smartphone interactions; though at times a smartphone is used to

alleviate negative affect (Kardefelt-Winther, 2014). Depressed per-

sons tend to socially withdraw from their social contacts, and this

even has been made visible with meaningful GPS correlations such as

more often staying at home (Saeb et al., 2015).

We did not have structured diagnostic interviews to assess men-

tal disorders, instead using standardized self-report instruments, a

possible limitation. We also note that levels of depression and anxiety

were quite low, in the healthy range. We also only included iPhone

users. Furthermore, objective phone use measurement may have

limitations as well, including counting minutes of use for features pas-

sively used, such as navigation or music listening.

Nonetheless, our focus on objective smartphone use measure-

ment is an advantage over the literature on self-reported/estimated

use, as objective measures are more reliable yet less frequently used.

Additionally, our analysis of lesser examined academic-related study

and productivity variables in relation to increased smartphone use is

an innovation over prior work. Specifically, primary findings suggest

that increased surface learning and procrastination relate to fewer

smartphone pickups, and lower productivity relate to increased

minutes of use. Future research could examine psychological variables

in relation to additional objective smartphone use variables, such as

GPS/phone location data (Saeb et al., 2015), calling behavior (Montag

et al., 2019), and text messaging (Messner et al., n.d.).
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comparing group means on each dependent variable.

Abbreviations: Minutes, averaged daily minutes of smartphone use (objectively reported); Notifications, averaged daily number of notifications (objectively

measured); Pickups, averaged daily number of pickups (objectively measured).
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